cs_ss.json 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362
  1. {
  2. "norm": "cs_ss",
  3. "system": "作为一位经验丰富的污水处理厂专家。悬浮固体(SS)是衡量水体悬浮物污染程度的重要指标之一。出水悬浮固体超标意味着排放的水中仍然含有较高浓度的悬浮颗粒物,不符合排放标准。\n污水处理厂的关键指标数据如下:\n\n<begin>\n出水SS:当前值为{{SS_off}}mg/L,标准值为{{SS_off_name}} mg/L,管控值为{{SS_off_con}}。\n进水SS:当前的值为{{SS_in}}mg/L,设计值为{{SS_in_name}}mg/L。\n进水水温:当前值是{{T}}。\n进水pH:当前值是{{pH}}。\n进水TDS:当前的值为{{TDS_in}}mg/L,管控值为{{TDS_in_name}}mg/L。\n{% for item in mlvss_items -%}\n池{{loop.index}} MLVSS:当前值{{item.MLVSS}}mg/L,稳态值{{item.MLVSS_wentai}}mg/L。\n{%- endfor %}\n{% for item in mlss_items -%}\n池{{loop.index}}生化池污泥浓度 MLSS:当前值{{item.MLSS}}mg/L,稳态值{{item.MLSS_wentai}}mg/L。\n{%- endfor %}\n{% for item in doo_items -%}\n池{{loop.index}}好氧池溶解氧:当前值为{{item.DO_O}}mg/L,稳态值为{{item.DO_O_wentai}}mg/L。\n{%- endfor %}\n<line>\n出水SS存在连续超标。\n进水SS和设计值比较{{js_design_status}}\n各个好氧池的溶解氧当前值{{hy_cc_rjy_status}}各自的稳态值\n每个池子的MLVSS与MLSS的比值{{mlvss_status}}其对应MLVSS与MLSS的稳态值比值\n每个池子生化池污泥浓度MLSS{{mlss_status}}各自的稳态值\n进水TDS{{tds_status}}管控值\n进水水温{{sw_status8}}8\n进水pH{{pH_status}}小于6或{{pH_status}}大于9\n<end>\n根据以上信息,请回答以下问题,只需给出问题后括号内的选项即可,无需解释:\n\n出水SS是否存在连续超标?(存在/不存在)。\n进水SS与设计值的比较?(未超标/超标)。\n每个池子的MLVSS与MLSS的比值是否大于其对应MLVSS与MLSS的稳态值比值?(至少一个池子有大于/都未大于)。\n各个好氧池的溶解氧当前值是否超出各自对应的稳态值?(至少一个池子有超出/都未超出)。\n每个池子生化池污泥浓度MLSS是否超出各自的稳态值?(都未超出/至少一个池子有超出)。\n进水水温是否低于8?(是/否)。\n进水TDS是否超出管控值?(超出/未超出)。\n进水pH是否小于6或大于9?(是/否)。",
  4. "prompt": "<begin>\n{% for item in mlss_items -%}\n池{{loop.index}}生化池污泥浓度 MLSS:当前值{{item.MLSS}},建议调整值{{item.MLSS_wentai}}。\n{%- endfor %}<end>",
  5. "data_desc": "已知数据:出水SS标准值是10;历史7天进水SS数据{{SS_DATA}};历史7天进水数量{{WATER_DATA}}; ",
  6. "boot": [
  7. "2_2",
  8. "2_4",
  9. "2_6",
  10. "2_8",
  11. "2_10",
  12. "2_12",
  13. "2_14",
  14. "2_16"
  15. ],
  16. "questions": [
  17. {
  18. "id": "2_2",
  19. "mainType": "text",
  20. "mainContent": "出水SS是否存在连续超标?",
  21. "options": [
  22. {
  23. "option": "存在",
  24. "next": [
  25. "4_2"
  26. ]
  27. },
  28. {
  29. "option": "不存在",
  30. "next": [
  31. "4_3"
  32. ]
  33. }
  34. ]
  35. },
  36. {
  37. "id": "2_4",
  38. "mainType": "text",
  39. "mainContent": "进水SS与设计值的比较?",
  40. "options": [
  41. {
  42. "option": "未超标",
  43. "next": [
  44. "4_4"
  45. ]
  46. },
  47. {
  48. "option": "超标",
  49. "next": [
  50. "4_5"
  51. ]
  52. }
  53. ]
  54. },
  55. {
  56. "id": "2_6",
  57. "mainType": "text",
  58. "mainContent": "每个池子的MLVSS与MLSS的比值是否大于其对应MLVSS与MLSS的稳态值比值?",
  59. "options": [
  60. {
  61. "option": "都未大于",
  62. "next": [
  63. "4_6"
  64. ]
  65. },
  66. {
  67. "option": "至少一个池子有大于",
  68. "next": [
  69. "4_7"
  70. ]
  71. }
  72. ]
  73. },
  74. {
  75. "id": "2_8",
  76. "mainType": "text",
  77. "mainContent": "各个好氧池的溶解氧当前值是否超出各自对应的稳态值?",
  78. "options": [
  79. {
  80. "option": "都未超出",
  81. "next": [
  82. "4_8"
  83. ]
  84. },
  85. {
  86. "option": "至少一个池子有超出",
  87. "next": [
  88. "4_9"
  89. ]
  90. }
  91. ]
  92. },
  93. {
  94. "id": "2_10",
  95. "mainType": "text",
  96. "mainContent": "每个池子生化池污泥浓度MLSS是否超出各自的稳态值?",
  97. "options": [
  98. {
  99. "option": "都未超出",
  100. "next": [
  101. "4_10"
  102. ]
  103. },
  104. {
  105. "option": "至少一个池子有超出",
  106. "next": [
  107. "4_11"
  108. ]
  109. }
  110. ]
  111. },
  112. {
  113. "id": "2_12",
  114. "mainType": "text",
  115. "mainContent": "进水水温是否低于8?",
  116. "options": [
  117. {
  118. "option": "否",
  119. "next": [
  120. "4_12"
  121. ]
  122. },
  123. {
  124. "option": "是",
  125. "next": [
  126. "4_13"
  127. ]
  128. }
  129. ]
  130. },
  131. {
  132. "id": "2_14",
  133. "mainType": "text",
  134. "mainContent": "进水pH是否小于6或大于9?",
  135. "options": [
  136. {
  137. "option": "否",
  138. "next": [
  139. "4_14"
  140. ]
  141. },
  142. {
  143. "option": "gjgj",
  144. "next": [
  145. "4_15"
  146. ]
  147. }
  148. ]
  149. },
  150. {
  151. "id": "2_16",
  152. "mainType": "text",
  153. "mainContent": "进水TDS是否超出管控值?",
  154. "options": [
  155. {
  156. "option": "未超出",
  157. "next": [
  158. "4_16"
  159. ]
  160. },
  161. {
  162. "option": "超出",
  163. "next": [
  164. "4_17"
  165. ]
  166. }
  167. ]
  168. },
  169. {
  170. "id": "3_2",
  171. "mainType": "text",
  172. "mainContent": "存在",
  173. "options": []
  174. },
  175. {
  176. "id": "3_3",
  177. "mainType": "text",
  178. "mainContent": "不存在",
  179. "options": []
  180. },
  181. {
  182. "id": "3_4",
  183. "mainType": "text",
  184. "mainContent": "未超标",
  185. "options": []
  186. },
  187. {
  188. "id": "3_5",
  189. "mainType": "text",
  190. "mainContent": "超标",
  191. "options": []
  192. },
  193. {
  194. "id": "3_6",
  195. "mainType": "text",
  196. "mainContent": "都未大于",
  197. "options": []
  198. },
  199. {
  200. "id": "3_7",
  201. "mainType": "text",
  202. "mainContent": "至少一个池子有大于",
  203. "options": []
  204. },
  205. {
  206. "id": "3_8",
  207. "mainType": "text",
  208. "mainContent": "都未超出",
  209. "options": []
  210. },
  211. {
  212. "id": "3_9",
  213. "mainType": "text",
  214. "mainContent": "至少一个池子有超出",
  215. "options": []
  216. },
  217. {
  218. "id": "3_10",
  219. "mainType": "text",
  220. "mainContent": "都未超出",
  221. "options": []
  222. },
  223. {
  224. "id": "3_11",
  225. "mainType": "text",
  226. "mainContent": "至少一个池子有超出",
  227. "options": []
  228. },
  229. {
  230. "id": "3_12",
  231. "mainType": "text",
  232. "mainContent": "否",
  233. "options": []
  234. },
  235. {
  236. "id": "3_13",
  237. "mainType": "text",
  238. "mainContent": "是",
  239. "options": []
  240. },
  241. {
  242. "id": "3_14",
  243. "mainType": "text",
  244. "mainContent": "否",
  245. "options": []
  246. },
  247. {
  248. "id": "3_15",
  249. "mainType": "text",
  250. "mainContent": "gjgj",
  251. "options": []
  252. },
  253. {
  254. "id": "3_16",
  255. "mainType": "text",
  256. "mainContent": "未超出",
  257. "options": []
  258. },
  259. {
  260. "id": "3_17",
  261. "mainType": "text",
  262. "mainContent": "超出",
  263. "options": []
  264. },
  265. {
  266. "id": "4_2",
  267. "mainType": "export",
  268. "mainContent": "解决方案:\n- 当前水质状态,出水SS连续超标。\n- 立即启动应急预案开展相关工艺调整,与行业主管部门报备并建立联动机制,落实具体方案,将生态环境损害降至最低,免于环保问责或处罚。",
  269. "options": []
  270. },
  271. {
  272. "id": "4_3",
  273. "mainType": "export",
  274. "mainContent": "",
  275. "options": []
  276. },
  277. {
  278. "id": "4_4",
  279. "mainType": "export",
  280. "mainContent": "",
  281. "options": []
  282. },
  283. {
  284. "id": "4_5",
  285. "mainType": "export",
  286. "mainContent": "解决方案:\n- 当前水质状态:进水SS超设计值。\n- 向行业主管部门报备、开展水质溯源进行源头控制、工艺调整优化等工作。\n- 污泥浓度控制调整:增加剩余污泥排放量,降低系统污泥浓度,每次调整幅度控制不超过常态稳定时的10%,A²O等连续流工艺均以日为单位,检测校核调整效果。\n- 外回流量调整:适当降低外回流比,避免沉淀池固体负荷过高;A²O等连续流工艺以生化池停留时间为单位,检测校核调整效果。\n- 风量调整:适当降低DO,避免过曝,调整幅度每次5%(根据实际情况可适当调整),有气量计量的的以读数为准,没有的可按照变频器的频率和额定风量核算,以气水比的数值和实际溶解氧校核,A²O等连续流工艺调整3~5小时后检测DO校核。\n- 如果进水SS超设计值标准1.1倍连续2天以上,可以参考下面方案,否则不采用以下方案:\n- 优先采取降负荷运行方式:具备条件且无环保风险的前提下,按照污染物负荷总量核算运行负荷或根据应急预案执行。\n- 系统面临瘫痪风险,根据现场实际情况,可选择性进行系统保留和放弃,即停进水闷曝内循环系统和进水运行负荷系统;\n- 运行负荷调整涉及管网的污水溢流问题,事关环保风险责任,因此启动应急预案落实负荷调整时要完成主管报备,必要时同步联动专家论证程序,确保合法合规。",
  287. "options": []
  288. },
  289. {
  290. "id": "4_6",
  291. "mainType": "export",
  292. "mainContent": "",
  293. "options": []
  294. },
  295. {
  296. "id": "4_7",
  297. "mainType": "export",
  298. "mainContent": "解决方案:\n- 当前水质状态:MLVSS/MLSS异常超出稳态值。\n- 由于进水无机成分高或浮渣类多,造成出水SS超标,可采用以下方式解决:\n- 开展水质溯源进行源头控制;同步开展混凝药剂小试和投加点位优化验证,强化预处理效能。",
  299. "options": []
  300. },
  301. {
  302. "id": "4_8",
  303. "mainType": "export",
  304. "mainContent": "",
  305. "options": []
  306. },
  307. {
  308. "id": "4_9",
  309. "mainType": "export",
  310. "mainContent": "解决方案:\n- 当前水质状态:DO控制过高,曝气过渡。\n- DO控制过高,曝气过渡,污泥存在解絮,出水带泥,使得微生物活性下降,可采用以下方式解决:\n- 解决供风量过高导致的好氧段DO过高:首先查看风机状态,尝试降低已运行风机风量(调整幅度每次5%(根据实际情况可适当调整),有气量计量的的以读数为准,没有的按照变频器的频率和额定风量核算,以气水比的数值和实际溶解氧校核);其次,可以通过放空阀进行气量放空。A²O等连续流工艺调整后3~5小时后检测DO校核。\n- 供风量充足,解决由于生化池液位差异引起生化池气量分配不均导致的混合液回流DO过高\n调整各系统进水和污泥回流阀门,尽可能保障运行工况一致,进行各系统供气总阀和局部阀的调整,A²O等连续流工艺调整3~5小时后检测DO校核。",
  311. "options": []
  312. },
  313. {
  314. "id": "4_10",
  315. "mainType": "export",
  316. "mainContent": "",
  317. "options": []
  318. },
  319. {
  320. "id": "4_11",
  321. "mainType": "export",
  322. "mainContent": "解决方案:\n- 当前水质状态:生化池污泥浓度过高。\n- 由于污泥增值过快或排泥不及时等导致系统污泥浓度过高,使得微生物活性下降,可采用以下方式解决:\n- 进行工艺调整:加大剩余污泥排放量,缩短污泥龄,根据不同工艺历年来生产运行经验和污泥负荷核算,A²O及改良工艺控制秋冬季低温期污水处理厂污泥浓度控制在4000~6000mg/L。",
  323. "options": []
  324. },
  325. {
  326. "id": "4_12",
  327. "mainType": "export",
  328. "mainContent": "",
  329. "options": []
  330. },
  331. {
  332. "id": "4_13",
  333. "mainType": "export",
  334. "mainContent": "解决方案:\n- 当前水质状态:水温低于8℃,微生物活性明显降低。\n- 加强相关指标的检测频次和分析,提前采取运行管理措施和工艺调整\n- 合理控制污泥浓度:根据不同工艺历年来生产运行经验和污泥负荷核算,A²O及改良工艺控制秋冬季低温期污水处理厂污泥浓度控制在4000~6000mg/L。\n- 适当提高污泥龄,温降或换季期间污水处理厂逐步提高污泥浓度,生化池污泥泥龄一般控制在25~30天;如进水负荷较低(COD不超过150mg/L)情况下,也可控制在20~25天。\n- 解决污泥膨胀、老化、腐化、解絮等导致的出水带泥,SS不受控:强化污泥SV、SVI和镜检的污泥性状分析,按照污泥膨胀、腐化、老化、解絮等对症管控措施,及时完成工艺调整,将污泥负荷控制在设计管控目标内。\n- 恢复应急期调整:重新进行活性污泥接种和驯化;根据生化反应中出现问题选择相适应的微生物菌剂、污泥调理剂进行系统定向强化。\n- 若短期内无法恢复,应及时报备主管部门,启动应急预案。",
  335. "options": []
  336. },
  337. {
  338. "id": "4_14",
  339. "mainType": "export",
  340. "mainContent": "",
  341. "options": []
  342. },
  343. {
  344. "id": "4_15",
  345. "mainType": "export",
  346. "mainContent": "解决方案:\n- 当前水质状态:进水pH异常。pH异常导致微生物活性下降\n- 启动水质溯源,同步投加药剂调节pH,确保系统各生化段pH在合理范围内;\n- 解决高氨氮硝化反应过多消耗碱度或进水碱度降低导致系统缓冲液体系失衡\n- 根据回流混合液硝酸盐浓度和缺氧池碱度核算后,投加工业碱调节pH。",
  347. "options": []
  348. },
  349. {
  350. "id": "4_16",
  351. "mainType": "export",
  352. "mainContent": "",
  353. "options": []
  354. },
  355. {
  356. "id": "4_17",
  357. "mainType": "export",
  358. "mainContent": "解决方案:\n- 当前水质状态:进水TDS超过管控值\n- 向行业主管部门报备、开展水质溯源、启动应急预案等工作\n- 配合主管部门的调查认定,最短时间内完成源头控制,争在第一时间内最大限度降低处理负荷;或利用初沉池、水解酸化池等预处理设施投加絮凝剂提高进水絮凝效果,尽可能减少可沉降性毒性物质进行系统。\n- 开展毒性抑制定性分析\n- 根据属地重点工业企业排水清单和溯源结果,重点对重金属、典型芳香类化合物等及时开展毒性检测分析,同步进行小试抑制试验,确定进水毒性抑制和生化系统恢复潜力。\n- 毒性小试实验方案\n- 将现有生化系统活性污泥分别与异常进水和正常进水混合,保证污泥浓度一致条件下开展闷曝小试实验,每 8h 取样 1 次,24h 换水 1 次(换水量为 50%),连续运行 72h,比较不同进水 COD、NH3-N 污染物去除效率,根据实验结果确定:1. 探究污水厂进水是否对活性良好的微生物菌群产生延时毒性抑制作用;2.探究生化系统内活性污泥的硝化效能;3.探究解决当前生化池硝化抑制问题的适宜应对策略。\n- 恢复毒性抑制的关键工艺调整\n- 根据毒性抑制试验结果,生化系统COD去除率50%以上且不再继续降低,应尽可能最短时间完成优质外源活性污泥接种,随着驯化成熟,COD去除率不断升高,可同步加大剩余污泥排放,进行新老活性污泥的置换,根据实际情况也可尝试定向微生物菌剂投加等措施,缩短系统恢复时间。同时在调整期间提高相应参数、指标的检测频次和分析。\n- 长时间毒性冲击系统,应对措施\n- 系统濒临瘫痪,无法短期完成恢复的,及时启动专家论证程序,联动省市主管部门,落实具体方案,将生态环境损害降至最低,免于环保问责或处罚。",
  359. "options": []
  360. }
  361. ]
  362. }