123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648 |
- #ifndef Py_OBJECT_H
- #define Py_OBJECT_H
- #ifdef __cplusplus
- extern "C" {
- #endif
- /* Object and type object interface */
- /*
- Objects are structures allocated on the heap. Special rules apply to
- the use of objects to ensure they are properly garbage-collected.
- Objects are never allocated statically or on the stack; they must be
- accessed through special macros and functions only. (Type objects are
- exceptions to the first rule; the standard types are represented by
- statically initialized type objects, although work on type/class unification
- for Python 2.2 made it possible to have heap-allocated type objects too).
- An object has a 'reference count' that is increased or decreased when a
- pointer to the object is copied or deleted; when the reference count
- reaches zero there are no references to the object left and it can be
- removed from the heap.
- An object has a 'type' that determines what it represents and what kind
- of data it contains. An object's type is fixed when it is created.
- Types themselves are represented as objects; an object contains a
- pointer to the corresponding type object. The type itself has a type
- pointer pointing to the object representing the type 'type', which
- contains a pointer to itself!.
- Objects do not float around in memory; once allocated an object keeps
- the same size and address. Objects that must hold variable-size data
- can contain pointers to variable-size parts of the object. Not all
- objects of the same type have the same size; but the size cannot change
- after allocation. (These restrictions are made so a reference to an
- object can be simply a pointer -- moving an object would require
- updating all the pointers, and changing an object's size would require
- moving it if there was another object right next to it.)
- Objects are always accessed through pointers of the type 'PyObject *'.
- The type 'PyObject' is a structure that only contains the reference count
- and the type pointer. The actual memory allocated for an object
- contains other data that can only be accessed after casting the pointer
- to a pointer to a longer structure type. This longer type must start
- with the reference count and type fields; the macro PyObject_HEAD should be
- used for this (to accommodate for future changes). The implementation
- of a particular object type can cast the object pointer to the proper
- type and back.
- A standard interface exists for objects that contain an array of items
- whose size is determined when the object is allocated.
- */
- /* Py_DEBUG implies Py_REF_DEBUG. */
- #if defined(Py_DEBUG) && !defined(Py_REF_DEBUG)
- #define Py_REF_DEBUG
- #endif
- #if defined(Py_LIMITED_API) && defined(Py_REF_DEBUG)
- #error Py_LIMITED_API is incompatible with Py_DEBUG, Py_TRACE_REFS, and Py_REF_DEBUG
- #endif
- /* PyTypeObject structure is defined in cpython/object.h.
- In Py_LIMITED_API, PyTypeObject is an opaque structure. */
- typedef struct _typeobject PyTypeObject;
- #ifdef Py_TRACE_REFS
- /* Define pointers to support a doubly-linked list of all live heap objects. */
- #define _PyObject_HEAD_EXTRA \
- struct _object *_ob_next; \
- struct _object *_ob_prev;
- #define _PyObject_EXTRA_INIT 0, 0,
- #else
- #define _PyObject_HEAD_EXTRA
- #define _PyObject_EXTRA_INIT
- #endif
- /* PyObject_HEAD defines the initial segment of every PyObject. */
- #define PyObject_HEAD PyObject ob_base;
- #define PyObject_HEAD_INIT(type) \
- { _PyObject_EXTRA_INIT \
- 1, type },
- #define PyVarObject_HEAD_INIT(type, size) \
- { PyObject_HEAD_INIT(type) size },
- /* PyObject_VAR_HEAD defines the initial segment of all variable-size
- * container objects. These end with a declaration of an array with 1
- * element, but enough space is malloc'ed so that the array actually
- * has room for ob_size elements. Note that ob_size is an element count,
- * not necessarily a byte count.
- */
- #define PyObject_VAR_HEAD PyVarObject ob_base;
- #define Py_INVALID_SIZE (Py_ssize_t)-1
- /* Nothing is actually declared to be a PyObject, but every pointer to
- * a Python object can be cast to a PyObject*. This is inheritance built
- * by hand. Similarly every pointer to a variable-size Python object can,
- * in addition, be cast to PyVarObject*.
- */
- typedef struct _object {
- _PyObject_HEAD_EXTRA
- Py_ssize_t ob_refcnt;
- PyTypeObject *ob_type;
- } PyObject;
- /* Cast argument to PyObject* type. */
- #define _PyObject_CAST(op) ((PyObject*)(op))
- #define _PyObject_CAST_CONST(op) ((const PyObject*)(op))
- typedef struct {
- PyObject ob_base;
- Py_ssize_t ob_size; /* Number of items in variable part */
- } PyVarObject;
- /* Cast argument to PyVarObject* type. */
- #define _PyVarObject_CAST(op) ((PyVarObject*)(op))
- #define Py_REFCNT(ob) (_PyObject_CAST(ob)->ob_refcnt)
- #define Py_TYPE(ob) (_PyObject_CAST(ob)->ob_type)
- #define Py_SIZE(ob) (_PyVarObject_CAST(ob)->ob_size)
- static inline int _Py_IS_TYPE(const PyObject *ob, const PyTypeObject *type) {
- return ob->ob_type == type;
- }
- #define Py_IS_TYPE(ob, type) _Py_IS_TYPE(_PyObject_CAST_CONST(ob), type)
- static inline void _Py_SET_REFCNT(PyObject *ob, Py_ssize_t refcnt) {
- ob->ob_refcnt = refcnt;
- }
- #define Py_SET_REFCNT(ob, refcnt) _Py_SET_REFCNT(_PyObject_CAST(ob), refcnt)
- static inline void _Py_SET_TYPE(PyObject *ob, PyTypeObject *type) {
- ob->ob_type = type;
- }
- #define Py_SET_TYPE(ob, type) _Py_SET_TYPE(_PyObject_CAST(ob), type)
- static inline void _Py_SET_SIZE(PyVarObject *ob, Py_ssize_t size) {
- ob->ob_size = size;
- }
- #define Py_SET_SIZE(ob, size) _Py_SET_SIZE(_PyVarObject_CAST(ob), size)
- /*
- Type objects contain a string containing the type name (to help somewhat
- in debugging), the allocation parameters (see PyObject_New() and
- PyObject_NewVar()),
- and methods for accessing objects of the type. Methods are optional, a
- nil pointer meaning that particular kind of access is not available for
- this type. The Py_DECREF() macro uses the tp_dealloc method without
- checking for a nil pointer; it should always be implemented except if
- the implementation can guarantee that the reference count will never
- reach zero (e.g., for statically allocated type objects).
- NB: the methods for certain type groups are now contained in separate
- method blocks.
- */
- typedef PyObject * (*unaryfunc)(PyObject *);
- typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
- typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
- typedef int (*inquiry)(PyObject *);
- typedef Py_ssize_t (*lenfunc)(PyObject *);
- typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t);
- typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t);
- typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *);
- typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
- typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
- typedef int (*objobjproc)(PyObject *, PyObject *);
- typedef int (*visitproc)(PyObject *, void *);
- typedef int (*traverseproc)(PyObject *, visitproc, void *);
- typedef void (*freefunc)(void *);
- typedef void (*destructor)(PyObject *);
- typedef PyObject *(*getattrfunc)(PyObject *, char *);
- typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
- typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
- typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
- typedef PyObject *(*reprfunc)(PyObject *);
- typedef Py_hash_t (*hashfunc)(PyObject *);
- typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
- typedef PyObject *(*getiterfunc) (PyObject *);
- typedef PyObject *(*iternextfunc) (PyObject *);
- typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
- typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
- typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
- typedef PyObject *(*newfunc)(PyTypeObject *, PyObject *, PyObject *);
- typedef PyObject *(*allocfunc)(PyTypeObject *, Py_ssize_t);
- typedef struct{
- int slot; /* slot id, see below */
- void *pfunc; /* function pointer */
- } PyType_Slot;
- typedef struct{
- const char* name;
- int basicsize;
- int itemsize;
- unsigned int flags;
- PyType_Slot *slots; /* terminated by slot==0. */
- } PyType_Spec;
- PyAPI_FUNC(PyObject*) PyType_FromSpec(PyType_Spec*);
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000
- PyAPI_FUNC(PyObject*) PyType_FromSpecWithBases(PyType_Spec*, PyObject*);
- #endif
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03040000
- PyAPI_FUNC(void*) PyType_GetSlot(PyTypeObject*, int);
- #endif
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03090000
- PyAPI_FUNC(PyObject*) PyType_FromModuleAndSpec(PyObject *, PyType_Spec *, PyObject *);
- PyAPI_FUNC(PyObject *) PyType_GetModule(struct _typeobject *);
- PyAPI_FUNC(void *) PyType_GetModuleState(struct _typeobject *);
- #endif
- /* Generic type check */
- PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
- #define PyObject_TypeCheck(ob, tp) \
- (Py_IS_TYPE(ob, tp) || PyType_IsSubtype(Py_TYPE(ob), (tp)))
- PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
- PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
- PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
- PyAPI_FUNC(unsigned long) PyType_GetFlags(PyTypeObject*);
- PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
- PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
- PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
- PyObject *, PyObject *);
- PyAPI_FUNC(unsigned int) PyType_ClearCache(void);
- PyAPI_FUNC(void) PyType_Modified(PyTypeObject *);
- /* Generic operations on objects */
- PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
- PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
- PyAPI_FUNC(PyObject *) PyObject_ASCII(PyObject *);
- PyAPI_FUNC(PyObject *) PyObject_Bytes(PyObject *);
- PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
- PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
- PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
- PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
- PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
- PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
- PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
- PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
- PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
- PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
- PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *, PyObject *, PyObject *);
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000
- PyAPI_FUNC(int) PyObject_GenericSetDict(PyObject *, PyObject *, void *);
- #endif
- PyAPI_FUNC(Py_hash_t) PyObject_Hash(PyObject *);
- PyAPI_FUNC(Py_hash_t) PyObject_HashNotImplemented(PyObject *);
- PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
- PyAPI_FUNC(int) PyObject_Not(PyObject *);
- PyAPI_FUNC(int) PyCallable_Check(PyObject *);
- PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
- /* PyObject_Dir(obj) acts like Python builtins.dir(obj), returning a
- list of strings. PyObject_Dir(NULL) is like builtins.dir(),
- returning the names of the current locals. In this case, if there are
- no current locals, NULL is returned, and PyErr_Occurred() is false.
- */
- PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
- /* Helpers for printing recursive container types */
- PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
- PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
- /* Flag bits for printing: */
- #define Py_PRINT_RAW 1 /* No string quotes etc. */
- /*
- Type flags (tp_flags)
- These flags are used to change expected features and behavior for a
- particular type.
- Arbitration of the flag bit positions will need to be coordinated among
- all extension writers who publicly release their extensions (this will
- be fewer than you might expect!).
- Most flags were removed as of Python 3.0 to make room for new flags. (Some
- flags are not for backwards compatibility but to indicate the presence of an
- optional feature; these flags remain of course.)
- Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
- Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
- given type object has a specified feature.
- */
- /* Set if the type object is dynamically allocated */
- #define Py_TPFLAGS_HEAPTYPE (1UL << 9)
- /* Set if the type allows subclassing */
- #define Py_TPFLAGS_BASETYPE (1UL << 10)
- /* Set if the type implements the vectorcall protocol (PEP 590) */
- #ifndef Py_LIMITED_API
- #define Py_TPFLAGS_HAVE_VECTORCALL (1UL << 11)
- // Backwards compatibility alias for API that was provisional in Python 3.8
- #define _Py_TPFLAGS_HAVE_VECTORCALL Py_TPFLAGS_HAVE_VECTORCALL
- #endif
- /* Set if the type is 'ready' -- fully initialized */
- #define Py_TPFLAGS_READY (1UL << 12)
- /* Set while the type is being 'readied', to prevent recursive ready calls */
- #define Py_TPFLAGS_READYING (1UL << 13)
- /* Objects support garbage collection (see objimpl.h) */
- #define Py_TPFLAGS_HAVE_GC (1UL << 14)
- /* These two bits are preserved for Stackless Python, next after this is 17 */
- #ifdef STACKLESS
- #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3UL << 15)
- #else
- #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
- #endif
- /* Objects behave like an unbound method */
- #define Py_TPFLAGS_METHOD_DESCRIPTOR (1UL << 17)
- /* Objects support type attribute cache */
- #define Py_TPFLAGS_HAVE_VERSION_TAG (1UL << 18)
- #define Py_TPFLAGS_VALID_VERSION_TAG (1UL << 19)
- /* Type is abstract and cannot be instantiated */
- #define Py_TPFLAGS_IS_ABSTRACT (1UL << 20)
- /* These flags are used to determine if a type is a subclass. */
- #define Py_TPFLAGS_LONG_SUBCLASS (1UL << 24)
- #define Py_TPFLAGS_LIST_SUBCLASS (1UL << 25)
- #define Py_TPFLAGS_TUPLE_SUBCLASS (1UL << 26)
- #define Py_TPFLAGS_BYTES_SUBCLASS (1UL << 27)
- #define Py_TPFLAGS_UNICODE_SUBCLASS (1UL << 28)
- #define Py_TPFLAGS_DICT_SUBCLASS (1UL << 29)
- #define Py_TPFLAGS_BASE_EXC_SUBCLASS (1UL << 30)
- #define Py_TPFLAGS_TYPE_SUBCLASS (1UL << 31)
- #define Py_TPFLAGS_DEFAULT ( \
- Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
- Py_TPFLAGS_HAVE_VERSION_TAG | \
- 0)
- /* NOTE: The following flags reuse lower bits (removed as part of the
- * Python 3.0 transition). */
- /* The following flag is kept for compatibility. Starting with 3.8,
- * binary compatibility of C extensions across feature releases of
- * Python is not supported anymore, except when using the stable ABI.
- */
- /* Type structure has tp_finalize member (3.4) */
- #define Py_TPFLAGS_HAVE_FINALIZE (1UL << 0)
- /*
- The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
- reference counts. Py_DECREF calls the object's deallocator function when
- the refcount falls to 0; for
- objects that don't contain references to other objects or heap memory
- this can be the standard function free(). Both macros can be used
- wherever a void expression is allowed. The argument must not be a
- NULL pointer. If it may be NULL, use Py_XINCREF/Py_XDECREF instead.
- The macro _Py_NewReference(op) initialize reference counts to 1, and
- in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
- bookkeeping appropriate to the special build.
- We assume that the reference count field can never overflow; this can
- be proven when the size of the field is the same as the pointer size, so
- we ignore the possibility. Provided a C int is at least 32 bits (which
- is implicitly assumed in many parts of this code), that's enough for
- about 2**31 references to an object.
- XXX The following became out of date in Python 2.2, but I'm not sure
- XXX what the full truth is now. Certainly, heap-allocated type objects
- XXX can and should be deallocated.
- Type objects should never be deallocated; the type pointer in an object
- is not considered to be a reference to the type object, to save
- complications in the deallocation function. (This is actually a
- decision that's up to the implementer of each new type so if you want,
- you can count such references to the type object.)
- */
- #ifdef Py_REF_DEBUG
- PyAPI_DATA(Py_ssize_t) _Py_RefTotal;
- PyAPI_FUNC(void) _Py_NegativeRefcount(const char *filename, int lineno,
- PyObject *op);
- #endif /* Py_REF_DEBUG */
- PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
- static inline void _Py_INCREF(PyObject *op)
- {
- #ifdef Py_REF_DEBUG
- _Py_RefTotal++;
- #endif
- op->ob_refcnt++;
- }
- #define Py_INCREF(op) _Py_INCREF(_PyObject_CAST(op))
- static inline void _Py_DECREF(
- #ifdef Py_REF_DEBUG
- const char *filename, int lineno,
- #endif
- PyObject *op)
- {
- #ifdef Py_REF_DEBUG
- _Py_RefTotal--;
- #endif
- if (--op->ob_refcnt != 0) {
- #ifdef Py_REF_DEBUG
- if (op->ob_refcnt < 0) {
- _Py_NegativeRefcount(filename, lineno, op);
- }
- #endif
- }
- else {
- _Py_Dealloc(op);
- }
- }
- #ifdef Py_REF_DEBUG
- # define Py_DECREF(op) _Py_DECREF(__FILE__, __LINE__, _PyObject_CAST(op))
- #else
- # define Py_DECREF(op) _Py_DECREF(_PyObject_CAST(op))
- #endif
- /* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
- * and tp_dealloc implementations.
- *
- * Note that "the obvious" code can be deadly:
- *
- * Py_XDECREF(op);
- * op = NULL;
- *
- * Typically, `op` is something like self->containee, and `self` is done
- * using its `containee` member. In the code sequence above, suppose
- * `containee` is non-NULL with a refcount of 1. Its refcount falls to
- * 0 on the first line, which can trigger an arbitrary amount of code,
- * possibly including finalizers (like __del__ methods or weakref callbacks)
- * coded in Python, which in turn can release the GIL and allow other threads
- * to run, etc. Such code may even invoke methods of `self` again, or cause
- * cyclic gc to trigger, but-- oops! --self->containee still points to the
- * object being torn down, and it may be in an insane state while being torn
- * down. This has in fact been a rich historic source of miserable (rare &
- * hard-to-diagnose) segfaulting (and other) bugs.
- *
- * The safe way is:
- *
- * Py_CLEAR(op);
- *
- * That arranges to set `op` to NULL _before_ decref'ing, so that any code
- * triggered as a side-effect of `op` getting torn down no longer believes
- * `op` points to a valid object.
- *
- * There are cases where it's safe to use the naive code, but they're brittle.
- * For example, if `op` points to a Python integer, you know that destroying
- * one of those can't cause problems -- but in part that relies on that
- * Python integers aren't currently weakly referencable. Best practice is
- * to use Py_CLEAR() even if you can't think of a reason for why you need to.
- */
- #define Py_CLEAR(op) \
- do { \
- PyObject *_py_tmp = _PyObject_CAST(op); \
- if (_py_tmp != NULL) { \
- (op) = NULL; \
- Py_DECREF(_py_tmp); \
- } \
- } while (0)
- /* Function to use in case the object pointer can be NULL: */
- static inline void _Py_XINCREF(PyObject *op)
- {
- if (op != NULL) {
- Py_INCREF(op);
- }
- }
- #define Py_XINCREF(op) _Py_XINCREF(_PyObject_CAST(op))
- static inline void _Py_XDECREF(PyObject *op)
- {
- if (op != NULL) {
- Py_DECREF(op);
- }
- }
- #define Py_XDECREF(op) _Py_XDECREF(_PyObject_CAST(op))
- /*
- These are provided as conveniences to Python runtime embedders, so that
- they can have object code that is not dependent on Python compilation flags.
- */
- PyAPI_FUNC(void) Py_IncRef(PyObject *);
- PyAPI_FUNC(void) Py_DecRef(PyObject *);
- /*
- _Py_NoneStruct is an object of undefined type which can be used in contexts
- where NULL (nil) is not suitable (since NULL often means 'error').
- Don't forget to apply Py_INCREF() when returning this value!!!
- */
- PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
- #define Py_None (&_Py_NoneStruct)
- /* Macro for returning Py_None from a function */
- #define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
- /*
- Py_NotImplemented is a singleton used to signal that an operation is
- not implemented for a given type combination.
- */
- PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
- #define Py_NotImplemented (&_Py_NotImplementedStruct)
- /* Macro for returning Py_NotImplemented from a function */
- #define Py_RETURN_NOTIMPLEMENTED \
- return Py_INCREF(Py_NotImplemented), Py_NotImplemented
- /* Rich comparison opcodes */
- #define Py_LT 0
- #define Py_LE 1
- #define Py_EQ 2
- #define Py_NE 3
- #define Py_GT 4
- #define Py_GE 5
- /*
- * Macro for implementing rich comparisons
- *
- * Needs to be a macro because any C-comparable type can be used.
- */
- #define Py_RETURN_RICHCOMPARE(val1, val2, op) \
- do { \
- switch (op) { \
- case Py_EQ: if ((val1) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \
- case Py_NE: if ((val1) != (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \
- case Py_LT: if ((val1) < (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \
- case Py_GT: if ((val1) > (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \
- case Py_LE: if ((val1) <= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \
- case Py_GE: if ((val1) >= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \
- default: \
- Py_UNREACHABLE(); \
- } \
- } while (0)
- /*
- More conventions
- ================
- Argument Checking
- -----------------
- Functions that take objects as arguments normally don't check for nil
- arguments, but they do check the type of the argument, and return an
- error if the function doesn't apply to the type.
- Failure Modes
- -------------
- Functions may fail for a variety of reasons, including running out of
- memory. This is communicated to the caller in two ways: an error string
- is set (see errors.h), and the function result differs: functions that
- normally return a pointer return NULL for failure, functions returning
- an integer return -1 (which could be a legal return value too!), and
- other functions return 0 for success and -1 for failure.
- Callers should always check for errors before using the result. If
- an error was set, the caller must either explicitly clear it, or pass
- the error on to its caller.
- Reference Counts
- ----------------
- It takes a while to get used to the proper usage of reference counts.
- Functions that create an object set the reference count to 1; such new
- objects must be stored somewhere or destroyed again with Py_DECREF().
- Some functions that 'store' objects, such as PyTuple_SetItem() and
- PyList_SetItem(),
- don't increment the reference count of the object, since the most
- frequent use is to store a fresh object. Functions that 'retrieve'
- objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
- don't increment
- the reference count, since most frequently the object is only looked at
- quickly. Thus, to retrieve an object and store it again, the caller
- must call Py_INCREF() explicitly.
- NOTE: functions that 'consume' a reference count, like
- PyList_SetItem(), consume the reference even if the object wasn't
- successfully stored, to simplify error handling.
- It seems attractive to make other functions that take an object as
- argument consume a reference count; however, this may quickly get
- confusing (even the current practice is already confusing). Consider
- it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
- times.
- */
- #ifndef Py_LIMITED_API
- # define Py_CPYTHON_OBJECT_H
- # include "cpython/object.h"
- # undef Py_CPYTHON_OBJECT_H
- #endif
- static inline int
- PyType_HasFeature(PyTypeObject *type, unsigned long feature)
- {
- unsigned long flags;
- #ifdef Py_LIMITED_API
- // PyTypeObject is opaque in the limited C API
- flags = PyType_GetFlags(type);
- #else
- flags = type->tp_flags;
- #endif
- return ((flags & feature) != 0);
- }
- #define PyType_FastSubclass(type, flag) PyType_HasFeature(type, flag)
- static inline int _PyType_Check(PyObject *op) {
- return PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS);
- }
- #define PyType_Check(op) _PyType_Check(_PyObject_CAST(op))
- static inline int _PyType_CheckExact(PyObject *op) {
- return Py_IS_TYPE(op, &PyType_Type);
- }
- #define PyType_CheckExact(op) _PyType_CheckExact(_PyObject_CAST(op))
- #ifdef __cplusplus
- }
- #endif
- #endif /* !Py_OBJECT_H */
|