123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- /*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
- /* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/add.c,v 1.6 1996/07/02 09:57:33 jutta Exp $ */
- /*
- * See private.h for the more commonly used macro versions.
- */
- #include "config.h"
- #include <stdio.h>
- #include <assert.h>
- #include "private.h"
- #include "gsm.h"
- #include "proto.h"
- #define saturate(x) \
- ((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
- word gsm_add P2((a,b), word a, word b)
- {
- longword sum = (longword)a + (longword)b;
- return saturate(sum);
- }
- word gsm_sub P2((a,b), word a, word b)
- {
- longword diff = (longword)a - (longword)b;
- return saturate(diff);
- }
- word gsm_mult P2((a,b), word a, word b)
- {
- if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD;
- else return SASR( (longword)a * (longword)b, 15 );
- }
- word gsm_mult_r P2((a,b), word a, word b)
- {
- if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD;
- else {
- longword prod = (longword)a * (longword)b + 16384;
- prod >>= 15;
- return prod & 0xFFFF;
- }
- }
- word gsm_abs P1((a), word a)
- {
- return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
- }
- longword gsm_L_mult P2((a,b),word a, word b)
- {
- assert( a != MIN_WORD || b != MIN_WORD );
- return ((longword)a * (longword)b) << 1;
- }
- longword gsm_L_add P2((a,b), longword a, longword b)
- {
- if (a < 0) {
- if (b >= 0) return a + b;
- else {
- ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
- return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
- }
- }
- else if (b <= 0) return a + b;
- else {
- ulongword A = (ulongword)a + (ulongword)b;
- return A > MAX_LONGWORD ? MAX_LONGWORD : A;
- }
- }
- longword gsm_L_sub P2((a,b), longword a, longword b)
- {
- if (a >= 0) {
- if (b >= 0) return a - b;
- else {
- /* a>=0, b<0 */
- ulongword A = (ulongword)a + -(b + 1);
- return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
- }
- }
- else if (b <= 0) return a - b;
- else {
- /* a<0, b>0 */
- ulongword A = (ulongword)-(a + 1) + b;
- return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1;
- }
- }
- static unsigned char const bitoff[ 256 ] = {
- 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
- };
- word gsm_norm P1((a), longword a )
- /*
- * the number of left shifts needed to normalize the 32 bit
- * variable L_var1 for positive values on the interval
- *
- * with minimum of
- * minimum of 1073741824 (01000000000000000000000000000000) and
- * maximum of 2147483647 (01111111111111111111111111111111)
- *
- *
- * and for negative values on the interval with
- * minimum of -2147483648 (-10000000000000000000000000000000) and
- * maximum of -1073741824 ( -1000000000000000000000000000000).
- *
- * in order to normalize the result, the following
- * operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
- *
- * (That's 'ffs', only from the left, not the right..)
- */
- {
- assert(a != 0);
- if (a < 0) {
- if (a <= -1073741824) return 0;
- a = ~a;
- }
- return a & 0xffff0000
- ? ( a & 0xff000000
- ? -1 + bitoff[ 0xFF & (a >> 24) ]
- : 7 + bitoff[ 0xFF & (a >> 16) ] )
- : ( a & 0xff00
- ? 15 + bitoff[ 0xFF & (a >> 8) ]
- : 23 + bitoff[ 0xFF & a ] );
- }
- longword gsm_L_asl P2((a,n), longword a, int n)
- {
- if (n >= 32) return 0;
- if (n <= -32) return -(a < 0);
- if (n < 0) return gsm_L_asr(a, -n);
- return a << n;
- }
- word gsm_asl P2((a,n), word a, int n)
- {
- if (n >= 16) return 0;
- if (n <= -16) return -(a < 0);
- if (n < 0) return gsm_asr(a, -n);
- return a << n;
- }
- longword gsm_L_asr P2((a,n), longword a, int n)
- {
- if (n >= 32) return -(a < 0);
- if (n <= -32) return 0;
- if (n < 0) return a << -n;
- # ifdef SASR
- return a >> n;
- # else
- if (a >= 0) return a >> n;
- else return -(longword)( -(ulongword)a >> n );
- # endif
- }
- word gsm_asr P2((a,n), word a, int n)
- {
- if (n >= 16) return -(a < 0);
- if (n <= -16) return 0;
- if (n < 0) return a << -n;
- # ifdef SASR
- return a >> n;
- # else
- if (a >= 0) return a >> n;
- else return -(word)( -(uword)a >> n );
- # endif
- }
- /*
- * (From p. 46, end of section 4.2.5)
- *
- * NOTE: The following lines gives [sic] one correct implementation
- * of the div(num, denum) arithmetic operation. Compute div
- * which is the integer division of num by denum: with denum
- * >= num > 0
- */
- word gsm_div P2((num,denum), word num, word denum)
- {
- longword L_num = num;
- longword L_denum = denum;
- word div = 0;
- int k = 15;
- /* The parameter num sometimes becomes zero.
- * Although this is explicitly guarded against in 4.2.5,
- * we assume that the result should then be zero as well.
- */
- /* assert(num != 0); */
- assert(num >= 0 && denum >= num);
- if (num == 0)
- return 0;
- while (k--) {
- div <<= 1;
- L_num <<= 1;
- if (L_num >= L_denum) {
- L_num -= L_denum;
- div++;
- }
- }
- return div;
- }
|