{ "norm": "cs_tp", "system": "作为一位经验丰富的污水处理厂专家。总磷(TP)是衡量水体富营养化程度的重要指标之一。出水总磷超标意味着排放的水中仍然含有较高浓度的磷化合物,不符合排放标准。\n污水处理厂的关键指标数据如下:\n\n出水总磷:当前值为{{TP_off}}mg/L,标准值为{{TP_off_name}}mg/L ,管控值为{{TP_off_con}}mg/L。\n进水总磷:当前的值为{{TP_in}}mg/L,设计值为{{TP_in_name}}mg/L。\n进水TDS:当前的值为{{TDS_in}}mg/L,管控值为{{TDS_in_name}}mg/L。\n进水水温:当前值是{{T}}。\n进水pH:当前值是{{pH}}。\n进水碳磷比:是{{c}},稳态值是{{BTP_wending}}。\n{% for item in doana_items -%}\n厌氧池{{loop.index}}溶解氧:当前值是{{item.DO_ana}}mg/L,稳态值是{{item.DO_ana_wentai}}mg/L。\n{%- endfor %}\n{% for item in sv_items -%}\n池{{loop.index}}污泥沉降比:当前的值为{{item.SV}}%,管控值为{{item.SV_con}}%。\n{%- endfor %}\n{% for item in svi_items -%}\n池{{loop.index}}污泥体积指数:当前的值为{{item.SVI}}mL/g,管控值为{{item.SVI_con}}mL/g。\n{%- endfor %}\n\n化学除磷率{{TP_LV_continuity}}下降。\n出水总磷存在连续超标。\n进水总磷和设计值比较{{js_design_status}}\n各个厌氧池的溶解氧当前值{{yy_cc_rjy_status}}各自的稳态值\n各个池子的污泥沉降比和污泥体积指数{{wncjb_status}}其对应的管控值\n进水水温{{sw_status10}}10\n进水TDS{{tds_status}}管控值\n进水碳磷比{{tlb_status}}稳态值\n进水pH{{pH_status}}低于6.5\n\n根据以上信息,请回答以下问题,只需给出问题后括号内的选项即可,无需解释:\n\n出水总磷是否存在连续超标?(存在/不存在)。\n化学除磷率是否存在下降?(存在/不存在)。\n进水总磷与设计值的比较?(未超标/超标)。\n各个厌氧池的溶解氧当前值是否超出各自的稳态值? (都未超出/至少一个池子有超出)\n各个池子的污泥沉降比和污泥体积指数是否超过其对应的管控值?(都未超过/至少一个池子有超过)\n进水水温是否低于10?(是/否)。\n进水TDS是否超出管控值?(超出/未超出)。\n进水碳磷比是否低于稳态值?(是/否)。\n进水pH是否低于6.5?(是/否)。", "prompt": "\n除磷药剂投加量: 当前值是{{cltjl}},建议调整值是{{cltjl_wentai}}。\n干污泥量: 当前值是{{gwnl}},建议调整值是{{gwnl_wentai}}。", "data_desc": "已知数据:出水总磷标准值是0.5;历史7天二沉池正磷酸盐数据:{{ZL_DATA}};历史7天进水总磷数据{{TP_DATA}};历史7天进水数量{{WATER_DATA}};", "boot": [ "2_2", "2_4", "2_6", "2_8", "2_10", "2_12", "2_14", "2_16", "2_19" ], "questions": [ { "id": "2_2", "mainType": "text", "mainContent": "出水总磷是否存在连续超标?", "options": [ { "option": "存在", "next": [ "4_2" ] }, { "option": "不存在", "next": [ "4_3" ] } ] }, { "id": "2_4", "mainType": "text", "mainContent": "进水总磷与设计值的比较?", "options": [ { "option": "未超标", "next": [ "4_4" ] }, { "option": "超标", "next": [ "4_5" ] } ] }, { "id": "2_6", "mainType": "text", "mainContent": "进水碳磷比是否低于稳态值?", "options": [ { "option": "否", "next": [ "4_6" ] }, { "option": "是", "next": [ "4_7" ] } ] }, { "id": "2_8", "mainType": "text", "mainContent": "各个厌氧池的溶解氧当前值是否超出各自的稳态值", "options": [ { "option": "都未超出", "next": [ "4_8" ] }, { "option": "至少一个池子有超出", "next": [ "4_9" ] } ] }, { "id": "2_10", "mainType": "text", "mainContent": "进水水温是否低于10?", "options": [ { "option": "否", "next": [ "4_10" ] }, { "option": "是", "next": [ "4_11" ] } ] }, { "id": "2_12", "mainType": "text", "mainContent": "进水pH是否低于6.5?", "options": [ { "option": "否", "next": [ "4_12" ] }, { "option": "是", "next": [ "4_13" ] } ] }, { "id": "2_14", "mainType": "text", "mainContent": "进水TDS是否超出管控值?", "options": [ { "option": "未超出", "next": [ "4_14" ] }, { "option": "超出", "next": [ "4_15" ] } ] }, { "id": "2_16", "mainType": "text", "mainContent": "各个池子的污泥沉降比和污泥体积指数是否超过其对应的管控值?", "options": [ { "option": "都未超过", "next": [ "4_16" ] }, { "option": "至少一个池子有超过", "next": [ "4_18" ] } ] }, { "id": "2_19", "mainType": "text", "mainContent": "化学除磷率是否存在下降?", "options": [ { "option": "不存在", "next": [ "4_19" ] }, { "option": "存在", "next": [ "4_20" ] } ] }, { "id": "3_2", "mainType": "text", "mainContent": "存在", "options": [] }, { "id": "3_3", "mainType": "text", "mainContent": "不存在", "options": [] }, { "id": "3_4", "mainType": "text", "mainContent": "未超标", "options": [] }, { "id": "3_5", "mainType": "text", "mainContent": "超标", "options": [] }, { "id": "3_6", "mainType": "text", "mainContent": "否", "options": [] }, { "id": "3_7", "mainType": "text", "mainContent": "是", "options": [] }, { "id": "3_8", "mainType": "text", "mainContent": "都未超出", "options": [] }, { "id": "3_9", "mainType": "text", "mainContent": "至少一个池子有超出", "options": [] }, { "id": "3_10", "mainType": "text", "mainContent": "否", "options": [] }, { "id": "3_11", "mainType": "text", "mainContent": "是", "options": [] }, { "id": "3_12", "mainType": "text", "mainContent": "否", "options": [] }, { "id": "3_13", "mainType": "text", "mainContent": "是", "options": [] }, { "id": "3_14", "mainType": "text", "mainContent": "未超出", "options": [] }, { "id": "3_15", "mainType": "text", "mainContent": "超出", "options": [] }, { "id": "3_16", "mainType": "text", "mainContent": "都未超过", "options": [ { "option": "{{export}}", "next": [] } ] }, { "id": "3_18", "mainType": "text", "mainContent": "至少一个池子有超过", "options": [] }, { "id": "3_19", "mainType": "text", "mainContent": "不存在", "options": [] }, { "id": "3_20", "mainType": "text", "mainContent": "存在", "options": [] }, { "id": "4_2", "mainType": "export", "mainContent": "解决方案:\n- 当前水质状态,出水总磷连续超标。\n- 立即启动应急预案开展相关工艺调整,与行业主管部门报备并建立联动机制,落实具体方案,将生态环境损害降至最低,免于环保问责或处罚。\n- 提高好氧出水、二沉池正磷酸的检测频次,复核出水正磷酸盐和总磷的真实变化;\n- 针对当前水质状态及时开展除磷药剂小试实验,确定出水总磷达标的除磷药剂投加量。同时如有自动智能除磷加药系统,可通过调整控制参数进行精准投药。\n- 为规避预测真实风险,可适当提高除磷药剂投加量(自动状态下调整控制系数,建议提高1.2~1.5倍或手动人为经验给定投加量)。", "options": [] }, { "id": "4_3", "mainType": "export", "mainContent": "", "options": [] }, { "id": "4_4", "mainType": "export", "mainContent": "", "options": [] }, { "id": "4_5", "mainType": "export", "mainContent": "解决方案:\n- 当前水质状态:进水总磷超标。\n- 向行业主管部门报备、开展水质溯源进行源头控制、工艺调整优化等工作。\n- 污泥浓度控制调整:增加剩余污泥排放量,降低系统污泥浓度,每次调整幅度控制不超过常态稳定时的10%,A²O等连续流工艺均以日为单位,检测校核调整效果。\n- 回流量调整:适当提高外回流比,外回流比不宜超过150%;合理控制好氧末端溶解氧DO不超过2mg/L,总氮可控的前提下适当降低内回流比保障厌氧释磷环境,A²O等连续流工艺以生化池停留时间为单位,检测校核调整效果。\n- 如果进水总磷超设计值标准1.1倍连续2天以上,可以参考下面方案,否则不采用以下方案:\n- 优先采取降负荷运行方式:具备条件且无环保风险的前提下,按照污染物负荷总量核算运行负荷或根据应急预案执行。\n- 系统面临瘫痪风险,根据现场实际情况,可选择性进行系统保留和放弃,即停进水闷曝内循环系统和进水运行负荷系统;\n- 运行负荷调整涉及管网的污水溢流问题,事关环保风险责任,因此启动应急预案落实负荷调整时要完成主管报备,必要时同步联动专家论证程序,确保合法合规。", "options": [] }, { "id": "4_6", "mainType": "export", "mainContent": "", "options": [] }, { "id": "4_7", "mainType": "export", "mainContent": "解决方案:\n- 当前水质状态:进水碳磷比失衡。\n- 强化水质变化数据分析,提前预警管控:开展水质溯源进行源头控制;合理调整C/P或利用精准投药系统实时动态调节,同步对除磷药剂投加点位可通过小试和生产性试验证进一步优化。\n- 工艺调整:A²O等连续流工艺可将生化系统的过渡段调整为厌氧段运行,同时优化多点进水和回流分配,提高厌氧释磷的底物浓度和反应速率,一个厌氧停留时间后检测校核调整效果;", "options": [] }, { "id": "4_8", "mainType": "export", "mainContent": "", "options": [] }, { "id": "4_9", "mainType": "export", "mainContent": "解决方案:\n- 当前水质状态:厌氧池溶解氧偏高。\n- 由于出水混合液 DO 控制过高,内外回流将高DO 带回了厌氧池,厌氧段DO高于0.2mg/L,难以形成厌氧环境,抑制释磷反应,微生物活性下降,可采用以下方式解决:\n- 供风量过高导致的好氧混合液DO过高:首先查看风机状态,尝试降低已运行风机风量(调整幅度每次5%(根据实际情况可适当调整),有气量计量的以读数为准,没有的按照变频器的频率和额定风量核算,以气水比的数值和实际溶解氧校核);其次,可以通过放空阀进行气量放空。A²O等连续流工艺调整后3~5小时后检测DO校核。\n- 供风量充足,解决由于生化池液位差异引起生化池气量分配不均导致的混合液回流DO过高:调整各系统进水和污泥回流阀门,尽可能保障运行工况一致,进行各系统供气总阀和局部阀的调整,A²O等连续流工艺调整3~5小时后检测DO校核。\n- 二沉池长时间DO过低,造成总磷的二次释放:合理控制好氧末端DO,将二沉池DO刮吸泥机等运转正常,避免厌缺氧导致磷释放。", "options": [] }, { "id": "4_10", "mainType": "export", "mainContent": "", "options": [] }, { "id": "4_11", "mainType": "export", "mainContent": "解决方案:\n- 当前水质状态:进水水温过低。微生物活性明显降低。一般温度每降低10℃,COD去除率降低10%。\n- 加强相关指标的检测频次和分析,提前采取运行管理措施和工艺调整\n- 适当加大剩余污泥排放量,缩短污泥龄,一般以除磷为目的的生物处理系统的泥龄控制在7天左右,但要综合考虑系统脱氮能力,生化池污泥泥龄一般控制在20天左右。\n- 根据不同工艺历年来生产运行经验和污泥负荷核算,A²O及改良工艺控制秋冬季低温期污水处理厂污泥浓度控制在4000~6000mg/L。", "options": [] }, { "id": "4_12", "mainType": "export", "mainContent": "", "options": [] }, { "id": "4_13", "mainType": "export", "mainContent": "解决方案:\n- 当前水质状态:进水pH过低。\n- 最适宜pH值为6.5-8,pH值低于6.5时,吸磷率急剧下降,pH下降引起的释放是破坏性的“酸溶”效应,pH下降引起的厌氧释放量越大,好氧吸磷能力就越低,微生物活性下降,可采用以下方式解决:\n- 启动水质溯源,同步投加碱调节pH,确保系统各生化段pH在合理范围内;\n- 解决高氨氮硝化反应过多消耗碱度或进水碱度降低导致系统缓冲液体系失衡\n- 根据回流混合液硝酸盐浓度和缺氧池碱度核算后,投加工业碱调节pH。", "options": [] }, { "id": "4_14", "mainType": "export", "mainContent": "", "options": [] }, { "id": "4_15", "mainType": "export", "mainContent": "解决方案:\n- 当前水质状态:进水TDS超过管控值\n- 向行业主管部门报备、开展水质溯源、启动应急预案等工作\n- 配合主管部门的调查认定,最短时间内完成源头控制,争在第一时间内最大限度降低处理负荷;或利用初沉池、水解酸化池等预处理设施投加絮凝剂提高进水絮凝效果,尽可能减少可沉降性毒性物质进行系统。\n- 开展毒性抑制定性分析\n- 根据属地重点工业企业排水清单和溯源结果,重点对重金属、典型芳香类化合物等及时开展毒性检测分析,同步进行小试抑制试验,确定进水毒性抑制和生化系统恢复潜力。\n- 毒性小试实验方案\n- 将现有生化系统活性污泥分别与异常进水和正常进水混合,保证污泥浓度一致条件下开展闷曝小试实验,每 8h 取样 1 次,24h 换水 1 次(换水量为 50%),连续运行 72h,比较不同进水 COD、NH3-N 污染物去除效率,根据实验结果确定:1. 探究污水厂进水是否对活性良好的微生物菌群产生延时毒性抑制作用;2.探究生化系统内活性污泥的硝化效能;3.探究解决当前生化池硝化抑制问题的适宜应对策略。\n- 恢复毒性抑制的关键工艺调整\n- 根据毒性抑制试验结果,生化系统COD去除率50%以上且不再继续降低,应尽可能最短时间完成优质外源活性污泥接种,随着驯化成熟,COD去除率不断升高,可同步加大剩余污泥排放,进行新老活性污泥的置换,根据实际情况也可尝试定向微生物菌剂投加等措施,缩短系统恢复时间。同时在调整期间提高相应参数、指标的检测频次和分析。\n- 长时间毒性冲击系统,应对措施\n- 系统濒临瘫痪,无法短期完成恢复的,及时启动专家论证程序,联动省市主管部门,落实具体方案,将生态环境损害降至最低,免于环保问责或处罚。", "options": [] }, { "id": "4_16", "mainType": "export", "mainContent": "", "options": [] }, { "id": "4_18", "mainType": "export", "mainContent": "解决方案:\n- 当前水质状态:污泥沉降比和污泥体积指数异常\n- 加强污泥SV、SVI和镜检分析,根据污泥状态采取相应措施,及时调整工艺,控制污泥负荷在设计范围内。\n- 恢复应急期调整:重新接种并驯化活性污泥;选用合适的微生物菌剂和污泥调理剂,定向强化系统。\n- 若短期内无法恢复,应及时报备主管部门,启动应急预案。", "options": [] }, { "id": "4_19", "mainType": "export", "mainContent": "", "options": [] }, { "id": "4_20", "mainType": "export", "mainContent": "解决方案:\n- 当前水质状态:化学除磷效率下降\n- 进水磷组分发生变化,立即进行磷组分检测和不同除磷药剂的小试定量试验,确定出水总磷达标的除磷药剂投加量。同时如有自动智能除磷加药系统,可通过调整控制参数进行精准投药。\n- 药剂投加量不足以小试试验定量为指导,实际生产适当提高投加系数,一般不高于1.5倍为宜,根据投加点位的不同,按投加后系统停留时间为单位,进行效果校核调整,药剂投加量提升的同时,提高剩余污泥排放量,避免长期大量除磷药剂回流系统,影响生物除磷。", "options": [] } ] }