|
@@ -76,6 +76,160 @@ public class GRPCController extends BaseController {
|
|
|
private BigModelConfig bigModelConfig;
|
|
|
|
|
|
|
|
|
+ /**
|
|
|
+ *
|
|
|
+ * get请求测试决策输出
|
|
|
+ *
|
|
|
+ * @param response
|
|
|
+ */
|
|
|
+ @GetMapping(value = "/test/aaa")
|
|
|
+ public void decisionStreamTest(HttpServletResponse response)
|
|
|
+// public void decisionStream(HttpServletResponse response, ChatReq chatReq)
|
|
|
+ {
|
|
|
+ log.info("进入了调⽤大模型决策接口");
|
|
|
+ ChatReq chatReq = new ChatReq();
|
|
|
+ HashMap<String, Object> map = new HashMap<>();
|
|
|
+ map.put("2_2", "正常");
|
|
|
+ map.put("4_25", "没有");
|
|
|
+ map.put("2_28", "否");
|
|
|
+ map.put("6_3", "超标");
|
|
|
+ chatReq.setFeedback(JSON.toJSONString(map));
|
|
|
+ chatReq.setCategory("出水氨氮");
|
|
|
+ chatReq.setWarningId("782");
|
|
|
+ chatReq.setSimulate("{}");
|
|
|
+ // 获取输出流
|
|
|
+ OutputStream outputStream = null;
|
|
|
+ ManagedChannel channel = null;
|
|
|
+ //response.setContentType("text/plain");
|
|
|
+ response.setContentType("text/event-stream");
|
|
|
+ response.setCharacterEncoding("utf-8");
|
|
|
+ //2024年5月29日14:15:58 新增逻辑,判断报警状态是否已经结束了,如果结束了就直接模拟一个report返回给前端,不再调用大模型
|
|
|
+ String warningId = chatReq.getWarningId();
|
|
|
+ if(StringUtils.isBlank(warningId))
|
|
|
+ throw new ServiceException("请输入正确的告警id");
|
|
|
+ TXinyiWarningRecord xinyiWarningRecord = this.xinyiWarningRecordMapper.selectTXinyiWarningRecordById(Long.parseLong(warningId));
|
|
|
+ if(Objects.isNull(xinyiWarningRecord))
|
|
|
+ throw new ServiceException("请输入正确的告警id,没有查询到告警信息");
|
|
|
+ if(1 == xinyiWarningRecord.getStatus() || 2 == xinyiWarningRecord.getStatus()){
|
|
|
+ //已经关闭的报警,不允许再次点击报警了
|
|
|
+ String message = this.buildMsg();
|
|
|
+ try {
|
|
|
+ outputStream = response.getOutputStream();
|
|
|
+ outputStream.write(message.getBytes());
|
|
|
+ outputStream.flush();
|
|
|
+ return;//输出完提示信息就结束
|
|
|
+ } catch (IOException e) {
|
|
|
+ throw new RuntimeException(e);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ StringBuilder sb = new StringBuilder();
|
|
|
+ //大模型结果 放入一个结合中
|
|
|
+ List<String> resultData = new ArrayList<>();
|
|
|
+ //决策和问答不一样 没有历史的概念 所以sessionId都是新的 次数都是1
|
|
|
+ String sessionId = IdUtils.simpleUUID();
|
|
|
+ String feedback = chatReq.getFeedback();
|
|
|
+ String simulate = chatReq.getSimulate();
|
|
|
+ int type = 3;//仿真预测
|
|
|
+ if(StringUtils.isBlank(simulate) || "{}".equals(simulate))
|
|
|
+ type = 1;//决策
|
|
|
+ //决策请求的业务参数
|
|
|
+ List<DecisionReq> decisionReqs = getDecisionReqs();
|
|
|
+// String rows = JSON.toJSONString(decisionReqs, JSONWriter.Feature.WriteNulls);
|
|
|
+ boolean needAdd = true;//标识变量是否可以保存
|
|
|
+ String dataJson = "";
|
|
|
+ try {
|
|
|
+ channel = ManagedChannelBuilder.forAddress(bigModelConfig.getIp(), bigModelConfig.getPort())
|
|
|
+ .usePlaintext()
|
|
|
+ .build();
|
|
|
+ InferenceAPIsServiceGrpc.InferenceAPIsServiceBlockingStub stub = InferenceAPIsServiceGrpc.newBlockingStub(channel);
|
|
|
+// dataJson = "{\"bot_id\":\"b00001\",\"exp_id\":\"721\",\"norm\":\"" + chatReq.getCategory() + "\",\"feedback\":" + feedback + ",\"simulate\":" + simulate + ",\"session_id\":" + "\"" + sessionId + "\"" + ",\"generate_args\":{\"max_new_tokens\":1024,\"max_length\":4096,\"num_beams\":1,\"do_sample\":true,\"top_p\":0.7,\"temperature\":0.95},\"extra\":{\"rows\":" + rows + "}}";
|
|
|
+ //2024年6月24日17:59:17 优化,不再拼接JSON字符串
|
|
|
+ dataJson = buildBigModelReqForDecision(chatReq, feedback, simulate, sessionId, decisionReqs, xinyiWarningRecord, chatReq.getTopP(), chatReq.getTemperature());
|
|
|
+// log.info("请求大模型的决策的参数为{}", dataJson);
|
|
|
+ PredictionsRequest request = PredictionsRequest.newBuilder()
|
|
|
+ .setModelName("slibra_bot")
|
|
|
+ .putInput("method", ByteString.copyFrom("decision_stream", "utf-8"))//推理
|
|
|
+ .putInput("data", ByteString.copyFrom(dataJson, "utf-8"))
|
|
|
+ .buildPartial();
|
|
|
+ outputStream = response.getOutputStream();
|
|
|
+ Iterator<PredictionResponse> predictions = stub.streamPredictions(request);
|
|
|
+ int i = 0 ;
|
|
|
+ while (predictions.hasNext()) {
|
|
|
+ String responseStr = predictions.next().getPrediction().toStringUtf8();
|
|
|
+// log.info("决策流式返回的结果是{}", responseStr);
|
|
|
+ if(StringUtils.isBlank(responseStr)){
|
|
|
+ log.info("大模型返回的流式决策内容存在空的值,跳过此次输出");
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ String message = JSON.parseObject(responseStr).getString("message");
|
|
|
+ //2024年5月25日16:37:16 按照大模型返回的类型解析数据
|
|
|
+ String biz = JSON.parseObject(responseStr).getString("biz");
|
|
|
+// String message = JSON.parseObject(responseStr).getString("message");
|
|
|
+ if(BusinessEnum.BigModelBizEnum.OK.getCode().equals(biz)){
|
|
|
+ log.info("结尾语句并且是非JSON,无需处理,返回数据为{}", responseStr);
|
|
|
+ //结束语句也流式输出,但是并不记录下来 2024年5月24日11:15:23 也不返回前端
|
|
|
+ }else if(BusinessEnum.BigModelBizEnum.DECISION_DEBUGGER.getCode().equals(biz)){
|
|
|
+ log.info("中间过程,目前只打印日志,不记录数据,也不返回给前端,返回数据为{}", responseStr);
|
|
|
+ //结束语句也流式输出,但是并不记录下来 2024年5月24日11:15:23 也不返回前端
|
|
|
+ //2024年6月23日14:55:19 如果大模型返回error了,不保存记录,并且提示一句错误语
|
|
|
+ }else if(BusinessEnum.BigModelBizEnum.ERROR.getCode().equalsIgnoreCase(biz)){
|
|
|
+ log.info("调用大模型的时候,返回的是ERROR,返回数据为{}", responseStr);
|
|
|
+ needAdd = false;
|
|
|
+ //返回的是error 给前端返回一句话
|
|
|
+ try {
|
|
|
+ String errMsg = this.buildErrMsg();
|
|
|
+ outputStream.write(errMsg.getBytes());
|
|
|
+ outputStream.flush();
|
|
|
+ } catch (IOException ex) {
|
|
|
+ throw new RuntimeException(ex);
|
|
|
+ }
|
|
|
+ } else{//其他 要么alert 要么出的报告
|
|
|
+// if(StringUtils.isBlank(message)){
|
|
|
+// log.info("×××××××××××××××××××××××××××为空的数据暂时不返回×××××××××××××××××××××××××××");
|
|
|
+// }else {
|
|
|
+// log.info("返回给前端的数据是{}", responseStr);
|
|
|
+ resultData.add(responseStr);
|
|
|
+ responseStr = responseStr + (i++) + "\n";
|
|
|
+ outputStream.write(responseStr.getBytes());
|
|
|
+ outputStream.flush();
|
|
|
+ //2024年7月12日17:47:08 加个打印,处理只要report类型的拼接结果
|
|
|
+ if(BusinessEnum.BigModelBizEnum.DECISION_REPORT.getCode().equalsIgnoreCase(biz)){
|
|
|
+ sb.append(message);
|
|
|
+ }
|
|
|
+// }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } catch (Exception e) {
|
|
|
+// throw new RuntimeException(e);
|
|
|
+ log.error("处理大模型推理异常,异常信息为{}", JSON.toJSONString(e));
|
|
|
+ //出现异常 给前端返回一句话
|
|
|
+ try {
|
|
|
+ outputStream = response.getOutputStream();
|
|
|
+ String errMsg = this.buildErrMsg();
|
|
|
+ outputStream.write(errMsg.getBytes());
|
|
|
+ outputStream.flush();
|
|
|
+ } catch (IOException ex) {
|
|
|
+ throw new RuntimeException(ex);
|
|
|
+ }
|
|
|
+ } finally {
|
|
|
+// log.info("sessionId是{}\n决策最终要保存的数据是{}", sessionId, JSON.toJSONString(resultData));
|
|
|
+// log.info("~~~~~~~~~~~~~~~决策最终返回的报告数据是{}", sb.toString());
|
|
|
+ //保存聊天记录
|
|
|
+ //将问答更新到数据库中
|
|
|
+ needAdd = false;
|
|
|
+ if(needAdd)
|
|
|
+ addChatRecord(chatReq, sessionId, type, warningId, dataJson, resultData);
|
|
|
+ // 关闭输出流
|
|
|
+ try {
|
|
|
+ outputStream.close();
|
|
|
+ } catch (IOException e) {
|
|
|
+ throw new RuntimeException(e);
|
|
|
+ }finally {
|
|
|
+ channel.shutdown();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
|
|
|
/**
|
|
|
* 调⽤大模型决策接口 + 仿真预测
|
|
@@ -134,7 +288,7 @@ public class GRPCController extends BaseController {
|
|
|
// dataJson = "{\"bot_id\":\"b00001\",\"exp_id\":\"721\",\"norm\":\"" + chatReq.getCategory() + "\",\"feedback\":" + feedback + ",\"simulate\":" + simulate + ",\"session_id\":" + "\"" + sessionId + "\"" + ",\"generate_args\":{\"max_new_tokens\":1024,\"max_length\":4096,\"num_beams\":1,\"do_sample\":true,\"top_p\":0.7,\"temperature\":0.95},\"extra\":{\"rows\":" + rows + "}}";
|
|
|
//2024年6月24日17:59:17 优化,不再拼接JSON字符串
|
|
|
dataJson = buildBigModelReqForDecision(chatReq, feedback, simulate, sessionId, decisionReqs, xinyiWarningRecord, chatReq.getTopP(), chatReq.getTemperature());
|
|
|
- log.info("请求大模型的决策的参数为{}", dataJson);
|
|
|
+// log.info("请求大模型的决策的参数为{}", dataJson);
|
|
|
PredictionsRequest request = PredictionsRequest.newBuilder()
|
|
|
.setModelName("slibra_bot")
|
|
|
.putInput("method", ByteString.copyFrom("decision_stream", "utf-8"))//推理
|
|
@@ -144,7 +298,7 @@ public class GRPCController extends BaseController {
|
|
|
Iterator<PredictionResponse> predictions = stub.streamPredictions(request);
|
|
|
while (predictions.hasNext()) {
|
|
|
String responseStr = predictions.next().getPrediction().toStringUtf8();
|
|
|
- log.info("决策流式返回的结果是{}", responseStr);
|
|
|
+// log.info("决策流式返回的结果是{}", responseStr);
|
|
|
if(StringUtils.isBlank(responseStr)){
|
|
|
log.info("大模型返回的流式决策内容存在空的值,跳过此次输出");
|
|
|
continue;
|
|
@@ -173,13 +327,17 @@ public class GRPCController extends BaseController {
|
|
|
}
|
|
|
} else{//其他 要么alert 要么出的报告
|
|
|
// sb.append(responseStr);
|
|
|
- if(StringUtils.isBlank(message)){
|
|
|
+ //2024年7月13日13:48:48 空的数据也返回,否则样式会有问题(当时加上这个是为了前端正常解析,否则他那里一次接受多个)
|
|
|
+ /*if(StringUtils.isBlank(message)){
|
|
|
log.info("×××××××××××××××××××××××××××为空的数据暂时不返回×××××××××××××××××××××××××××");
|
|
|
}else {
|
|
|
resultData.add(responseStr);
|
|
|
outputStream.write(responseStr.getBytes());
|
|
|
outputStream.flush();
|
|
|
- }
|
|
|
+ }*/
|
|
|
+ resultData.add(responseStr);
|
|
|
+ outputStream.write(responseStr.getBytes());
|
|
|
+ outputStream.flush();
|
|
|
}
|
|
|
}
|
|
|
} catch (Exception e) {
|
|
@@ -195,7 +353,7 @@ public class GRPCController extends BaseController {
|
|
|
throw new RuntimeException(ex);
|
|
|
}
|
|
|
} finally {
|
|
|
- log.info("sessionId是{}\n决策最终要保存的数据是{}", sessionId, JSON.toJSONString(resultData));
|
|
|
+// log.info("sessionId是{}\n决策最终要保存的数据是{}", sessionId, JSON.toJSONString(resultData));
|
|
|
//保存聊天记录
|
|
|
//将问答更新到数据库中
|
|
|
if(needAdd)
|
|
@@ -440,7 +598,7 @@ public class GRPCController extends BaseController {
|
|
|
// String dataJson = "{\"bot_id\":\"721\",\"exp_id\":\"721\",\"session_id\":\"" + sessionId + "\",\"use_rag\":\"true\",\"prompt\":\"你是LibraAI水务大模型,由红杉天枰开发的水务垂直大语言模型,能够提供水务行业专家问答、智能决策、报表分析、智能工单管理等一系列功能,作为水务人的AI助手,你会竭尽全力帮助我处理工作问题。\",\"history_dia\":" + JSON.toJSONString(historyDates) + ",\"generate_args\":{\"max_new_tokens\":2048,\"max_length\":4096,\"num_beams\":1,\"do_sample\":true,\"top_p\":0.7,\"temperature\":0.95},\"extra\":{ \"ip_address\": \"" + ipAddr + "\" },\"strengthen\":" + (isStrong == 1) + "}";
|
|
|
//2024年6月25日18:12:23 优化,不再使用拼接JSON字符串
|
|
|
String dataJson = buildBigModelReqForChat(sessionId, historyDates, ipAddr, isStrong, chatReq.getTopP(), chatReq.getTemperature(), tools, useRag);
|
|
|
- log.info("请求大模型的问答参数为{}", dataJson);
|
|
|
+// log.info("请求大模型的问答参数为{}", dataJson);
|
|
|
PredictionsRequest request = PredictionsRequest.newBuilder()
|
|
|
.setModelName("slibra_bot")
|
|
|
.putInput("method", ByteString.copyFrom("infer_stream", "utf-8"))//推理
|
|
@@ -451,7 +609,7 @@ public class GRPCController extends BaseController {
|
|
|
//将结果记录到问答表
|
|
|
while (predictions.hasNext()) {
|
|
|
String responseStr = predictions.next().getPrediction().toStringUtf8();
|
|
|
- log.info("大模型问答返回的原始结果为{}", responseStr);
|
|
|
+// log.info("大模型问答返回的原始结果为{}", responseStr);
|
|
|
responseStr = JSON.parseObject(responseStr).getString("message");
|
|
|
if("complete".equals(responseStr) || StringUtils.isBlank(responseStr)){
|
|
|
// System.out.println("结尾语句并且是非JSON,无需处理");
|
|
@@ -759,7 +917,7 @@ public class GRPCController extends BaseController {
|
|
|
// String dataJson = "{\"bot_id\":\"b00001\",\"exp_id\":\"721\",\"norm\":\"出水氨氮\",\"session_id\":\" " + IdUtils.simpleUUID() + " \",\"extra\":{}}";
|
|
|
//2024年6月27日13:23:25 优化:改成非拼接JSON字符串
|
|
|
String dataJson = buildBigModelReqForPredictor("出水氨氮");
|
|
|
- log.info("请求大模型的预测的参数为{}", dataJson);
|
|
|
+// log.info("请求大模型的预测的参数为{}", dataJson);
|
|
|
PredictionsRequest request = PredictionsRequest.newBuilder()
|
|
|
.setModelName("slibra_bot")
|
|
|
.putInput("method", ByteString.copyFrom("predictor", "utf-8"))//推理
|
|
@@ -772,7 +930,7 @@ public class GRPCController extends BaseController {
|
|
|
log.info("大模型问答返回的原始结果为{}", responseStr);*/
|
|
|
PredictionResponse predictions = stub.predictions(request);
|
|
|
String responseStr = predictions.getPrediction().toStringUtf8();
|
|
|
- log.info("大模型问答返回的原始结果为{}", responseStr);
|
|
|
+// log.info("大模型问答返回的原始结果为{}", responseStr);
|
|
|
} catch (IOException e) {
|
|
|
throw new RuntimeException(e);
|
|
|
} finally {
|