root 3 сар өмнө
parent
commit
b9427e07a0

+ 249 - 260
m3e/README.md

@@ -8,34 +8,34 @@ tags:
 - sentence-similarity
 - feature-extraction
 - generated_from_trainer
-- dataset_size:616789
+- dataset_size:588644
 - loss:CosineSimilarityLoss
 widget:
-- source_sentence: 我们到现在没有水
+- source_sentence: 我这水表冻裂了,寻思换一个多钱
   sentences:
-  - 水表怎么安装和更换?
-  - 阀门问题
-  - 维修人员什么时候能到
-- source_sentence: 我家水欠费给我停了,我都缴费好几天了不给供水啊
+  - 需本人到供水公司,携带“用户申请报停审批表”进行办理。
+  - 供水营业厅缴费地址:一、供水客户服务中心:会展中心道东光复西路790号。 二、佳东供水收费厅:长胜路与光复路交叉口长胜街85号。三、九小供水收费厅:第九小区大门西侧路北兴城胡同128号。四、行政服务中心一楼:长安路西段820号
+  - 线上报装登录佳木斯供水公众号, 点击“报装申请”,提交后,工作人员会在24小时内联系您。线下报装需本人到供水公司申请,居民用户携带本人身份证复印件和房照复印件,非居民用户携带营业执照复印件、法人复印件及公章。
+- source_sentence: 申请安装自来水需要哪些具体条件?
   sentences:
-  - 我家漏水了
-  - 再见
   - 怎么停水了?
-- source_sentence: 谢谢再见
+  - 您可以登录微信公众号佳木斯供水,进入主页面绑定用户信息后缴费,或者微信小程序中缴费页面输入用户编号进行缴费。或者也可以在支付宝生活缴费页面输入用户编号进行缴费。
+  - 不是
+- source_sentence: 咱家水表不好使,屋里头水都关了,不用水,它自己走
   sentences:
-  - 水表坏了
-  - 维修人员什么时候能到
+  - 缴水费后需要联系抄表员后,24小时内给水。
+  - 您可以登录微信公众号佳木斯供水,进入主页面绑定用户信息后缴费,或者微信小程序中缴费页面输入用户编号进行缴费。或者也可以在支付宝生活缴费页面输入用户编号进行缴费。
   - 怎么停水了?
-- source_sentence: 之前停水报修了也没查出来,再来人看看呗
+- source_sentence: 我想咨询个事儿,我家交水费这个名,后面有一个字错了,怎么改一下子
   sentences:
-  - 水表坏
+  - 怎么停水了
   - 我家漏水了
-  - 线上报装登录佳木斯供水公众号, 点击“报装申请”,提交后,工作人员会在24小时内联系您。线下报装需本人到供水公司申请,居民用户携带本人身份证复印件和房照复印件,非居民用户携带营业执照复印件、法人复印件及公章
-- source_sentence: 报停水,怎么处理?
+  - 缴水费后需要联系抄表员后,24小时内给水
+- source_sentence: 我家厨房的管可能冻了,没有水
   sentences:
   - 怎么停水了?
-  - 阀门问题
-  - 怎么停水了
+  - 您可以登录微信公众号佳木斯供水,进入主页面绑定用户信息后缴费,或者微信小程序中缴费页面输入用户编号进行缴费。或者也可以在支付宝生活缴费页面输入用户编号进行缴费。
+  - 水表坏
 ---
 
 # SentenceTransformer
@@ -87,9 +87,9 @@ from sentence_transformers import SentenceTransformer
 model = SentenceTransformer("sentence_transformers_model_id")
 # Run inference
 sentences = [
-    '报停水,怎么处理?',
+    '我家厨房的管可能冻了,没有水',
     '怎么停水了?',
-    '阀门问题',
+    '水表坏了',
 ]
 embeddings = model.encode(sentences)
 print(embeddings.shape)
@@ -144,19 +144,19 @@ You can finetune this model on your own dataset.
 #### Unnamed Dataset
 
 
-* Size: 616,789 training samples
+* Size: 588,644 training samples
 * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
 * Approximate statistics based on the first 1000 samples:
-  |         | sentence_0                                                                        | sentence_1                                                                         | label                                                         |
-  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
-  | type    | string                                                                            | string                                                                             | float                                                         |
-  | details | <ul><li>min: 4 tokens</li><li>mean: 14.84 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.31 tokens</li><li>max: 107 tokens</li></ul> | <ul><li>min: 0.3</li><li>mean: 0.3</li><li>max: 0.7</li></ul> |
+  |         | sentence_0                                                                       | sentence_1                                                                         | label                                                         |
+  |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
+  | type    | string                                                                           | string                                                                             | float                                                         |
+  | details | <ul><li>min: 3 tokens</li><li>mean: 14.9 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 23.63 tokens</li><li>max: 107 tokens</li></ul> | <ul><li>min: 0.3</li><li>mean: 0.3</li><li>max: 0.7</li></ul> |
 * Samples:
-  | sentence_0                     | sentence_1                                                                                    | label            |
-  |:-------------------------------|:----------------------------------------------------------------------------------------------|:-----------------|
-  | <code>自来水报装的窗口办理流程是怎样的?</code> | <code>怎么停水了?</code>                                                                           | <code>0.3</code> |
-  | <code>那个人工客服呢</code>           | <code>您可以登录微信公众号佳木斯供水,进入主页面绑定用户信息后缴费,或者微信小程序中缴费页面输入用户编号进行缴费。或者也可以在支付宝生活缴费页面输入用户编号进行缴费。</code> | <code>0.3</code> |
-  | <code>你们上班时间是什么时候</code>       | <code>怎么停水了?</code>                                                                           | <code>0.3</code> |
+  | sentence_0                             | sentence_1          | label            |
+  |:---------------------------------------|:--------------------|:-----------------|
+  | <code>我想问一下我家,三号楼五单元,为什么那个停水啊?</code>  | <code>阀门问题</code>   | <code>0.3</code> |
+  | <code>你好,刚才我打电话了,那个用户更名都用什么证件呢?</code> | <code>怎么停水了?</code> | <code>0.3</code> |
+  | <code>再说一下</code>                      | <code>怎么停水了?</code> | <code>0.3</code> |
 * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
   ```json
   {
@@ -294,237 +294,226 @@ You can finetune this model on your own dataset.
 
 | Epoch  | Step   | Training Loss |
 |:------:|:------:|:-------------:|
-| 0.0130 | 500    | 0.2128        |
-| 0.0259 | 1000   | 0.1824        |
-| 0.0389 | 1500   | 0.1326        |
-| 0.0519 | 2000   | 0.0781        |
-| 0.0649 | 2500   | 0.0334        |
-| 0.0778 | 3000   | 0.0146        |
-| 0.0908 | 3500   | 0.0085        |
-| 0.1038 | 4000   | 0.0058        |
-| 0.1167 | 4500   | 0.0045        |
-| 0.1297 | 5000   | 0.0038        |
-| 0.1427 | 5500   | 0.0034        |
-| 0.1556 | 6000   | 0.0029        |
-| 0.1686 | 6500   | 0.0027        |
-| 0.1816 | 7000   | 0.0026        |
-| 0.1946 | 7500   | 0.0025        |
-| 0.2075 | 8000   | 0.0023        |
-| 0.2205 | 8500   | 0.0023        |
-| 0.2335 | 9000   | 0.0021        |
-| 0.2464 | 9500   | 0.0021        |
-| 0.2594 | 10000  | 0.0019        |
-| 0.2724 | 10500  | 0.0018        |
-| 0.2853 | 11000  | 0.0018        |
-| 0.2983 | 11500  | 0.0017        |
-| 0.3113 | 12000  | 0.0016        |
-| 0.3243 | 12500  | 0.0015        |
-| 0.3372 | 13000  | 0.0014        |
-| 0.3502 | 13500  | 0.0015        |
-| 0.3632 | 14000  | 0.0016        |
-| 0.3761 | 14500  | 0.0016        |
-| 0.3891 | 15000  | 0.0013        |
-| 0.4021 | 15500  | 0.0014        |
-| 0.4150 | 16000  | 0.0013        |
-| 0.4280 | 16500  | 0.0013        |
-| 0.4410 | 17000  | 0.0012        |
-| 0.4540 | 17500  | 0.0013        |
-| 0.4669 | 18000  | 0.0013        |
-| 0.4799 | 18500  | 0.001         |
-| 0.4929 | 19000  | 0.0011        |
-| 0.5058 | 19500  | 0.001         |
-| 0.5188 | 20000  | 0.0009        |
-| 0.5318 | 20500  | 0.0009        |
-| 0.5447 | 21000  | 0.001         |
-| 0.5577 | 21500  | 0.0008        |
-| 0.5707 | 22000  | 0.0012        |
-| 0.5837 | 22500  | 0.0009        |
-| 0.5966 | 23000  | 0.0008        |
-| 0.6096 | 23500  | 0.0009        |
-| 0.6226 | 24000  | 0.0009        |
-| 0.6355 | 24500  | 0.0009        |
-| 0.6485 | 25000  | 0.0009        |
-| 0.6615 | 25500  | 0.0007        |
-| 0.6744 | 26000  | 0.0008        |
-| 0.6874 | 26500  | 0.0007        |
-| 0.7004 | 27000  | 0.0007        |
-| 0.7134 | 27500  | 0.0008        |
-| 0.7263 | 28000  | 0.0007        |
-| 0.7393 | 28500  | 0.0008        |
-| 0.7523 | 29000  | 0.0007        |
-| 0.7652 | 29500  | 0.0007        |
-| 0.7782 | 30000  | 0.0006        |
-| 0.7912 | 30500  | 0.0007        |
-| 0.8042 | 31000  | 0.0008        |
-| 0.8171 | 31500  | 0.0007        |
-| 0.8301 | 32000  | 0.0006        |
-| 0.8431 | 32500  | 0.0006        |
-| 0.8560 | 33000  | 0.0007        |
-| 0.8690 | 33500  | 0.0006        |
-| 0.8820 | 34000  | 0.0007        |
-| 0.8949 | 34500  | 0.0005        |
-| 0.9079 | 35000  | 0.0005        |
-| 0.9209 | 35500  | 0.0007        |
-| 0.9339 | 36000  | 0.0006        |
-| 0.9468 | 36500  | 0.0006        |
-| 0.9598 | 37000  | 0.0006        |
-| 0.9728 | 37500  | 0.0005        |
-| 0.9857 | 38000  | 0.0005        |
-| 0.9987 | 38500  | 0.0005        |
-| 1.0117 | 39000  | 0.0006        |
-| 1.0246 | 39500  | 0.0005        |
-| 1.0376 | 40000  | 0.0004        |
-| 1.0506 | 40500  | 0.0004        |
-| 1.0636 | 41000  | 0.0005        |
-| 1.0765 | 41500  | 0.0006        |
-| 1.0895 | 42000  | 0.0005        |
-| 1.1025 | 42500  | 0.0005        |
-| 1.1154 | 43000  | 0.0004        |
-| 1.1284 | 43500  | 0.0004        |
-| 1.1414 | 44000  | 0.0004        |
-| 1.1543 | 44500  | 0.0004        |
-| 1.1673 | 45000  | 0.0005        |
-| 1.1803 | 45500  | 0.0005        |
-| 1.1933 | 46000  | 0.0005        |
-| 1.2062 | 46500  | 0.0005        |
-| 1.2192 | 47000  | 0.0005        |
-| 1.2322 | 47500  | 0.0003        |
-| 1.2451 | 48000  | 0.0004        |
-| 1.2581 | 48500  | 0.0004        |
-| 1.2711 | 49000  | 0.0004        |
-| 1.2840 | 49500  | 0.0004        |
-| 1.2970 | 50000  | 0.0004        |
-| 1.3100 | 50500  | 0.0004        |
-| 1.3230 | 51000  | 0.0004        |
-| 1.3359 | 51500  | 0.0004        |
-| 1.3489 | 52000  | 0.0003        |
-| 1.3619 | 52500  | 0.0004        |
-| 1.3748 | 53000  | 0.0004        |
-| 1.3878 | 53500  | 0.0003        |
-| 1.4008 | 54000  | 0.0004        |
-| 1.4137 | 54500  | 0.0003        |
-| 1.4267 | 55000  | 0.0004        |
-| 1.4397 | 55500  | 0.0003        |
-| 1.4527 | 56000  | 0.0003        |
-| 1.4656 | 56500  | 0.0004        |
-| 1.4786 | 57000  | 0.0003        |
-| 1.4916 | 57500  | 0.0003        |
-| 1.5045 | 58000  | 0.0003        |
-| 1.5175 | 58500  | 0.0003        |
-| 1.5305 | 59000  | 0.0003        |
-| 1.5435 | 59500  | 0.0004        |
-| 1.5564 | 60000  | 0.0002        |
-| 1.5694 | 60500  | 0.0005        |
-| 1.5824 | 61000  | 0.0003        |
-| 1.5953 | 61500  | 0.0003        |
-| 1.6083 | 62000  | 0.0003        |
-| 1.6213 | 62500  | 0.0003        |
-| 1.6342 | 63000  | 0.0003        |
-| 1.6472 | 63500  | 0.0003        |
-| 1.6602 | 64000  | 0.0003        |
-| 1.6732 | 64500  | 0.0003        |
-| 1.6861 | 65000  | 0.0002        |
-| 1.6991 | 65500  | 0.0003        |
-| 1.7121 | 66000  | 0.0003        |
-| 1.7250 | 66500  | 0.0003        |
-| 1.7380 | 67000  | 0.0004        |
-| 1.7510 | 67500  | 0.0003        |
-| 1.7639 | 68000  | 0.0002        |
-| 1.7769 | 68500  | 0.0003        |
-| 1.7899 | 69000  | 0.0003        |
-| 1.8029 | 69500  | 0.0003        |
-| 1.8158 | 70000  | 0.0003        |
-| 1.8288 | 70500  | 0.0003        |
-| 1.8418 | 71000  | 0.0002        |
-| 1.8547 | 71500  | 0.0003        |
-| 1.8677 | 72000  | 0.0004        |
-| 1.8807 | 72500  | 0.0002        |
-| 1.8936 | 73000  | 0.0003        |
-| 1.9066 | 73500  | 0.0002        |
-| 1.9196 | 74000  | 0.0004        |
-| 1.9326 | 74500  | 0.0002        |
-| 1.9455 | 75000  | 0.0002        |
-| 1.9585 | 75500  | 0.0002        |
-| 1.9715 | 76000  | 0.0002        |
-| 1.9844 | 76500  | 0.0003        |
-| 1.9974 | 77000  | 0.0002        |
-| 2.0104 | 77500  | 0.0003        |
-| 2.0233 | 78000  | 0.0003        |
-| 2.0363 | 78500  | 0.0001        |
-| 2.0493 | 79000  | 0.0002        |
-| 2.0623 | 79500  | 0.0003        |
-| 2.0752 | 80000  | 0.0003        |
-| 2.0882 | 80500  | 0.0003        |
-| 2.1012 | 81000  | 0.0002        |
-| 2.1141 | 81500  | 0.0002        |
-| 2.1271 | 82000  | 0.0001        |
-| 2.1401 | 82500  | 0.0002        |
-| 2.1530 | 83000  | 0.0002        |
-| 2.1660 | 83500  | 0.0002        |
-| 2.1790 | 84000  | 0.0002        |
-| 2.1920 | 84500  | 0.0002        |
-| 2.2049 | 85000  | 0.0003        |
-| 2.2179 | 85500  | 0.0003        |
-| 2.2309 | 86000  | 0.0002        |
-| 2.2438 | 86500  | 0.0003        |
-| 2.2568 | 87000  | 0.0002        |
-| 2.2698 | 87500  | 0.0002        |
-| 2.2827 | 88000  | 0.0002        |
-| 2.2957 | 88500  | 0.0003        |
-| 2.3087 | 89000  | 0.0002        |
-| 2.3217 | 89500  | 0.0002        |
-| 2.3346 | 90000  | 0.0002        |
-| 2.3476 | 90500  | 0.0001        |
-| 2.3606 | 91000  | 0.0002        |
-| 2.3735 | 91500  | 0.0003        |
-| 2.3865 | 92000  | 0.0002        |
-| 2.3995 | 92500  | 0.0003        |
-| 2.4125 | 93000  | 0.0002        |
-| 2.4254 | 93500  | 0.0003        |
-| 2.4384 | 94000  | 0.0002        |
-| 2.4514 | 94500  | 0.0002        |
-| 2.4643 | 95000  | 0.0002        |
-| 2.4773 | 95500  | 0.0002        |
-| 2.4903 | 96000  | 0.0002        |
-| 2.5032 | 96500  | 0.0002        |
-| 2.5162 | 97000  | 0.0002        |
-| 2.5292 | 97500  | 0.0002        |
-| 2.5422 | 98000  | 0.0002        |
-| 2.5551 | 98500  | 0.0001        |
-| 2.5681 | 99000  | 0.0004        |
-| 2.5811 | 99500  | 0.0001        |
-| 2.5940 | 100000 | 0.0002        |
-| 2.6070 | 100500 | 0.0001        |
-| 2.6200 | 101000 | 0.0002        |
-| 2.6329 | 101500 | 0.0002        |
-| 2.6459 | 102000 | 0.0001        |
-| 2.6589 | 102500 | 0.0002        |
-| 2.6719 | 103000 | 0.0002        |
-| 2.6848 | 103500 | 0.0002        |
-| 2.6978 | 104000 | 0.0002        |
-| 2.7108 | 104500 | 0.0002        |
-| 2.7237 | 105000 | 0.0003        |
-| 2.7367 | 105500 | 0.0002        |
-| 2.7497 | 106000 | 0.0002        |
-| 2.7626 | 106500 | 0.0001        |
-| 2.7756 | 107000 | 0.0002        |
-| 2.7886 | 107500 | 0.0003        |
-| 2.8016 | 108000 | 0.0002        |
-| 2.8145 | 108500 | 0.0002        |
-| 2.8275 | 109000 | 0.0001        |
-| 2.8405 | 109500 | 0.0002        |
-| 2.8534 | 110000 | 0.0002        |
-| 2.8664 | 110500 | 0.0003        |
-| 2.8794 | 111000 | 0.0002        |
-| 2.8923 | 111500 | 0.0002        |
-| 2.9053 | 112000 | 0.0002        |
-| 2.9183 | 112500 | 0.0002        |
-| 2.9313 | 113000 | 0.0002        |
-| 2.9442 | 113500 | 0.0002        |
-| 2.9572 | 114000 | 0.0002        |
-| 2.9702 | 114500 | 0.0001        |
-| 2.9831 | 115000 | 0.0002        |
-| 2.9961 | 115500 | 0.0002        |
+| 0.0136 | 500    | 0.21          |
+| 0.0272 | 1000   | 0.1795        |
+| 0.0408 | 1500   | 0.1296        |
+| 0.0544 | 2000   | 0.0749        |
+| 0.0680 | 2500   | 0.0312        |
+| 0.0815 | 3000   | 0.0137        |
+| 0.0951 | 3500   | 0.0079        |
+| 0.1087 | 4000   | 0.0057        |
+| 0.1223 | 4500   | 0.0042        |
+| 0.1359 | 5000   | 0.0038        |
+| 0.1495 | 5500   | 0.0033        |
+| 0.1631 | 6000   | 0.0029        |
+| 0.1767 | 6500   | 0.0028        |
+| 0.1903 | 7000   | 0.0026        |
+| 0.2039 | 7500   | 0.0024        |
+| 0.2174 | 8000   | 0.0022        |
+| 0.2310 | 8500   | 0.0019        |
+| 0.2446 | 9000   | 0.0019        |
+| 0.2582 | 9500   | 0.002         |
+| 0.2718 | 10000  | 0.0019        |
+| 0.2854 | 10500  | 0.0019        |
+| 0.2990 | 11000  | 0.0017        |
+| 0.3126 | 11500  | 0.0016        |
+| 0.3262 | 12000  | 0.0016        |
+| 0.3398 | 12500  | 0.0016        |
+| 0.3533 | 13000  | 0.0015        |
+| 0.3669 | 13500  | 0.0014        |
+| 0.3805 | 14000  | 0.0013        |
+| 0.3941 | 14500  | 0.0015        |
+| 0.4077 | 15000  | 0.0014        |
+| 0.4213 | 15500  | 0.0012        |
+| 0.4349 | 16000  | 0.0013        |
+| 0.4485 | 16500  | 0.0012        |
+| 0.4621 | 17000  | 0.0013        |
+| 0.4757 | 17500  | 0.0012        |
+| 0.4893 | 18000  | 0.0011        |
+| 0.5028 | 18500  | 0.0011        |
+| 0.5164 | 19000  | 0.0011        |
+| 0.5300 | 19500  | 0.0012        |
+| 0.5436 | 20000  | 0.001         |
+| 0.5572 | 20500  | 0.0012        |
+| 0.5708 | 21000  | 0.0009        |
+| 0.5844 | 21500  | 0.0009        |
+| 0.5980 | 22000  | 0.0008        |
+| 0.6116 | 22500  | 0.0009        |
+| 0.6252 | 23000  | 0.0009        |
+| 0.6387 | 23500  | 0.0008        |
+| 0.6523 | 24000  | 0.0007        |
+| 0.6659 | 24500  | 0.0008        |
+| 0.6795 | 25000  | 0.0009        |
+| 0.6931 | 25500  | 0.0007        |
+| 0.7067 | 26000  | 0.0008        |
+| 0.7203 | 26500  | 0.0008        |
+| 0.7339 | 27000  | 0.0007        |
+| 0.7475 | 27500  | 0.0006        |
+| 0.7611 | 28000  | 0.0006        |
+| 0.7746 | 28500  | 0.0006        |
+| 0.7882 | 29000  | 0.0006        |
+| 0.8018 | 29500  | 0.0007        |
+| 0.8154 | 30000  | 0.0006        |
+| 0.8290 | 30500  | 0.0007        |
+| 0.8426 | 31000  | 0.0007        |
+| 0.8562 | 31500  | 0.0006        |
+| 0.8698 | 32000  | 0.0006        |
+| 0.8834 | 32500  | 0.0006        |
+| 0.8970 | 33000  | 0.0006        |
+| 0.9105 | 33500  | 0.0007        |
+| 0.9241 | 34000  | 0.0005        |
+| 0.9377 | 34500  | 0.0007        |
+| 0.9513 | 35000  | 0.0006        |
+| 0.9649 | 35500  | 0.0006        |
+| 0.9785 | 36000  | 0.0006        |
+| 0.9921 | 36500  | 0.0005        |
+| 1.0057 | 37000  | 0.0004        |
+| 1.0193 | 37500  | 0.0005        |
+| 1.0329 | 38000  | 0.0005        |
+| 1.0465 | 38500  | 0.0006        |
+| 1.0600 | 39000  | 0.0005        |
+| 1.0736 | 39500  | 0.0005        |
+| 1.0872 | 40000  | 0.0005        |
+| 1.1008 | 40500  | 0.0005        |
+| 1.1144 | 41000  | 0.0006        |
+| 1.1280 | 41500  | 0.0004        |
+| 1.1416 | 42000  | 0.0005        |
+| 1.1552 | 42500  | 0.0004        |
+| 1.1688 | 43000  | 0.0005        |
+| 1.1824 | 43500  | 0.0004        |
+| 1.1959 | 44000  | 0.0004        |
+| 1.2095 | 44500  | 0.0005        |
+| 1.2231 | 45000  | 0.0004        |
+| 1.2367 | 45500  | 0.0004        |
+| 1.2503 | 46000  | 0.0004        |
+| 1.2639 | 46500  | 0.0004        |
+| 1.2775 | 47000  | 0.0004        |
+| 1.2911 | 47500  | 0.0003        |
+| 1.3047 | 48000  | 0.0004        |
+| 1.3183 | 48500  | 0.0004        |
+| 1.3318 | 49000  | 0.0003        |
+| 1.3454 | 49500  | 0.0004        |
+| 1.3590 | 50000  | 0.0004        |
+| 1.3726 | 50500  | 0.0002        |
+| 1.3862 | 51000  | 0.0003        |
+| 1.3998 | 51500  | 0.0004        |
+| 1.4134 | 52000  | 0.0004        |
+| 1.4270 | 52500  | 0.0003        |
+| 1.4406 | 53000  | 0.0003        |
+| 1.4542 | 53500  | 0.0003        |
+| 1.4678 | 54000  | 0.0005        |
+| 1.4813 | 54500  | 0.0003        |
+| 1.4949 | 55000  | 0.0002        |
+| 1.5085 | 55500  | 0.0003        |
+| 1.5221 | 56000  | 0.0004        |
+| 1.5357 | 56500  | 0.0004        |
+| 1.5493 | 57000  | 0.0004        |
+| 1.5629 | 57500  | 0.0004        |
+| 1.5765 | 58000  | 0.0002        |
+| 1.5901 | 58500  | 0.0003        |
+| 1.6037 | 59000  | 0.0002        |
+| 1.6172 | 59500  | 0.0003        |
+| 1.6308 | 60000  | 0.0003        |
+| 1.6444 | 60500  | 0.0003        |
+| 1.6580 | 61000  | 0.0002        |
+| 1.6716 | 61500  | 0.0004        |
+| 1.6852 | 62000  | 0.0004        |
+| 1.6988 | 62500  | 0.0003        |
+| 1.7124 | 63000  | 0.0003        |
+| 1.7260 | 63500  | 0.0002        |
+| 1.7396 | 64000  | 0.0003        |
+| 1.7531 | 64500  | 0.0002        |
+| 1.7667 | 65000  | 0.0002        |
+| 1.7803 | 65500  | 0.0002        |
+| 1.7939 | 66000  | 0.0003        |
+| 1.8075 | 66500  | 0.0003        |
+| 1.8211 | 67000  | 0.0003        |
+| 1.8347 | 67500  | 0.0003        |
+| 1.8483 | 68000  | 0.0003        |
+| 1.8619 | 68500  | 0.0002        |
+| 1.8755 | 69000  | 0.0003        |
+| 1.8890 | 69500  | 0.0003        |
+| 1.9026 | 70000  | 0.0003        |
+| 1.9162 | 70500  | 0.0002        |
+| 1.9298 | 71000  | 0.0003        |
+| 1.9434 | 71500  | 0.0002        |
+| 1.9570 | 72000  | 0.0003        |
+| 1.9706 | 72500  | 0.0003        |
+| 1.9842 | 73000  | 0.0002        |
+| 1.9978 | 73500  | 0.0002        |
+| 2.0114 | 74000  | 0.0003        |
+| 2.0250 | 74500  | 0.0002        |
+| 2.0385 | 75000  | 0.0002        |
+| 2.0521 | 75500  | 0.0002        |
+| 2.0657 | 76000  | 0.0003        |
+| 2.0793 | 76500  | 0.0002        |
+| 2.0929 | 77000  | 0.0001        |
+| 2.1065 | 77500  | 0.0002        |
+| 2.1201 | 78000  | 0.0002        |
+| 2.1337 | 78500  | 0.0003        |
+| 2.1473 | 79000  | 0.0002        |
+| 2.1609 | 79500  | 0.0003        |
+| 2.1744 | 80000  | 0.0002        |
+| 2.1880 | 80500  | 0.0002        |
+| 2.2016 | 81000  | 0.0002        |
+| 2.2152 | 81500  | 0.0002        |
+| 2.2288 | 82000  | 0.0002        |
+| 2.2424 | 82500  | 0.0002        |
+| 2.2560 | 83000  | 0.0002        |
+| 2.2696 | 83500  | 0.0002        |
+| 2.2832 | 84000  | 0.0002        |
+| 2.2968 | 84500  | 0.0002        |
+| 2.3103 | 85000  | 0.0002        |
+| 2.3239 | 85500  | 0.0004        |
+| 2.3375 | 86000  | 0.0002        |
+| 2.3511 | 86500  | 0.0001        |
+| 2.3647 | 87000  | 0.0003        |
+| 2.3783 | 87500  | 0.0001        |
+| 2.3919 | 88000  | 0.0002        |
+| 2.4055 | 88500  | 0.0002        |
+| 2.4191 | 89000  | 0.0002        |
+| 2.4327 | 89500  | 0.0002        |
+| 2.4463 | 90000  | 0.0001        |
+| 2.4598 | 90500  | 0.0002        |
+| 2.4734 | 91000  | 0.0002        |
+| 2.4870 | 91500  | 0.0002        |
+| 2.5006 | 92000  | 0.0002        |
+| 2.5142 | 92500  | 0.0002        |
+| 2.5278 | 93000  | 0.0002        |
+| 2.5414 | 93500  | 0.0003        |
+| 2.5550 | 94000  | 0.0003        |
+| 2.5686 | 94500  | 0.0002        |
+| 2.5822 | 95000  | 0.0002        |
+| 2.5957 | 95500  | 0.0002        |
+| 2.6093 | 96000  | 0.0002        |
+| 2.6229 | 96500  | 0.0001        |
+| 2.6365 | 97000  | 0.0002        |
+| 2.6501 | 97500  | 0.0001        |
+| 2.6637 | 98000  | 0.0003        |
+| 2.6773 | 98500  | 0.0002        |
+| 2.6909 | 99000  | 0.0002        |
+| 2.7045 | 99500  | 0.0002        |
+| 2.7181 | 100000 | 0.0002        |
+| 2.7316 | 100500 | 0.0002        |
+| 2.7452 | 101000 | 0.0001        |
+| 2.7588 | 101500 | 0.0001        |
+| 2.7724 | 102000 | 0.0002        |
+| 2.7860 | 102500 | 0.0001        |
+| 2.7996 | 103000 | 0.0003        |
+| 2.8132 | 103500 | 0.0002        |
+| 2.8268 | 104000 | 0.0002        |
+| 2.8404 | 104500 | 0.0002        |
+| 2.8540 | 105000 | 0.0002        |
+| 2.8675 | 105500 | 0.0001        |
+| 2.8811 | 106000 | 0.0002        |
+| 2.8947 | 106500 | 0.0002        |
+| 2.9083 | 107000 | 0.0002        |
+| 2.9219 | 107500 | 0.0001        |
+| 2.9355 | 108000 | 0.0002        |
+| 2.9491 | 108500 | 0.0003        |
+| 2.9627 | 109000 | 0.0003        |
+| 2.9763 | 109500 | 0.0002        |
+| 2.9899 | 110000 | 0.0002        |
 
 </details>
 

BIN
m3e/model.safetensors


Файлын зөрүү хэтэрхий том тул дарагдсан байна
+ 0 - 0
models/conf/cate.cf


BIN
models/conf/index


Энэ ялгаанд хэт олон файл өөрчлөгдсөн тул зарим файлыг харуулаагүй болно